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Abstract

Random features is an approach for kernel-based infer-
ence on large datasets. In this paper, we derive perfor-
mance guarantees for random features on signals, like im-
ages, that enjoy sparse representations and show that the
number of random features required to achieve a desired
approximation of the kernel similarity matrix can be signifi-
cantly smaller for sparse signals. Based on this, we propose
a scheme termed compressive random features that first ob-
tains low-dimensional projections of a dataset and, subse-
quently, derives random features on the low-dimensional
projections. This scheme provides significant improvements
in signal dimensionality, computational time, and storage
costs over traditional random features while enjoying sim-
ilar theoretical guarantees for achieving inference perfor-
mance. We support our claims by providing empirical re-
sults across many datasets.

1. Introduction
Random features [26,37,38,43,46] is an approach to per-

form kernel-based inference on very large datasets. In the
traditional kernel approach, we need to construct the kernel-
similarity matrix whose storage and computational time are
quadratic in the size of the dataset; the quadratic depen-
dence on the size of the dataset makes the approach infeasi-
ble for Big Data scenarios. Random features addresses this
problem by explicitly constructing finite-dimensional ran-
dom features from the data such that inner products between
the random features approximate the kernel functions. In-
ference with random features achieves comparable perfor-
mance as those of the kernel-based ones while enjoying the
scalability of linear inference methods. Recently, it also
achieves performance comparable to a convolutional neu-
ral network on datasets like the ImageNet [13].

We show that for signals enjoying sparse representations
(either canonically or in a transform basis), the performance
guarantees of random features can be significantly strength-
ened. Specifically, we prove that the dimension of random
∗This work was supported by the ARO Grant W911NF-15-1-0126.

features required to approximate a stationary kernel func-
tion [42] dominantly depends on the signal sparsity instead
of the ambient dimension. For images, whose ambient di-
mension is often far greater than their sparsity, our analysis
greatly improves the theoretical bounds of random features.

We next show that both computational and storage costs
of random features applied to sparse signals can be signif-
icantly improved by first performing a dimensionality re-
duction using random projection and subsequently, apply-
ing random features to the dimensionality-reduced signals.
There are several advantages to this scheme. First, we show
that the theoretical guarantees in approximating the origi-
nal kernel function are similar to that of random features
applied on sparse signals. This means that the additional
dimensionality reduction step does not hinder our ability
to approximate kernel functions. Second, the dimensional-
ity reduction can be performed optically with compressive
cameras [19]. In regimes where sensing is costly, (for exam-
ple, short-wave infrared and midwave infrared), the use of
compressive cameras enables sensing with low-resolution
sensors [12, 32] with associated savings in cost of the cam-
era. Third, in the context of compressive imaging, infer-
ence tasks such as classification and detection are often sim-
pler than recovery [1, 31, 41] and hence, we can expect to
use high compression ratios in the dimensionality reduction
step. In our experiments, we are able to achieve 10 − 30×
compression with little loss in classification accuracy.

Contributions. In this paper, we propose a scheme called
compressive random features that applies random features
on compressive measurements of signals that enjoy sparse
representations either canonically or in a transform basis
(see Figure 1). Our contributions are three-fold:

• We prove that the number of random features required to
accurately approximate the kernel function depends pre-
dominantly on the sparsity of the signals.

• We show that random features applied to dimensionality-
reduced signals or equivalently, compressive measure-
ments, are able to approximate isometric kernel functions
of the original uncompressed data and provide analytical
guarantees that bound the loss in performance.
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Figure 1: Overview of typical kernel methods, random features, and our compressive random features. N is the number
of training samples, M is the dimension of the random features, d is the dimension of the original uncompressed data, and
m is the dimension of the compressive measurements. In testing computations of typical and compressive random features
schemes, we include the cost to construct random features and to apply classifiers for one test input.

• We also observe that our proposed scheme for com-
pressive inference offers comparable classification per-
formance, across many datasets, to similar approaches
applied directly on the original data while providing re-
duced computational time and storage.

2. Related work
Notations. We use d as the dimension of original uncom-
pressed signals, m as the dimension of compressive mea-
surements, M as the dimension of random features, and N
as the number of training samples. We use lowercase bold-
face letters to denote vectors and uppercase letters to denote
matrices. We say a signal is k-sparse if it has at most k non-
zero entries. All norms in this paper are `2-norm, denoted
by ‖·‖. The element-wise complex conjugate of a vector x
is written as x. We define the diameter and the radius of a
set X as

diam(X ) = max
x,y∈X

‖x− y‖,

radius(X ) = max
x∈X
‖x‖.

2.1. Random feature method

A hallmark of kernel-based inference is the development
of kernel trick, which utilizes kernel function to efficiently
evaluate similarity in infinitely high dimensional spaces;
thereby, kernel-based inference is capable of approximating
any decision boundary or function provided we have suffi-
cient training samples [42]. Despite this attractive ability,
kernel methods are prohibitive for large datasets because
of their high storage and time complexities during both the
training and testing phases. Specifically, with N training

samples, kernel trick usually requires computing and stor-
ing a kernel matrix whose size is N × N . Testing a single
input requires evaluating kernel function between the input
and a large portion of training samples [26].

The goal of random features [38] is to achieve a scal-
able implementation of kernel methods. Given a station-
ary kernel function K(x,y) = f(x − y) := f(δ), its
Fourier transform, p(ω), has only nonnegative entries [40]
due to the positive definiteness of the kernel and hence, can
be treated as a probabilistic density function. The inverse
Fourier transform of the kernel function is given as

K(x,y) =

∫
Rd

p(ω)ejω
>(x−y)dω = Ep[φω(x)φω(y)], (1)

where d is the dimension of the data, and φω(x) := ejω
>x.

The sample mean 1
M

∑M
i=1 φωi(x)φωi(y) is thus an un-

biased estimator of K(x,y) when {ωi} are i.i.d. samples
from p. Since f(δ) and p(ω) are real, we can reduce φω(x)
and define a real-valued random feature generating func-
tion, Φ : Rd → RM , as

Φ(x) =

√
2

M

[
cos(ω>1 x + b), · · · , cos(ω>Mx + b)

]>
, (2)

where ωi is drawn from the distribution p and b is drawn
uniformly from [0, 2π]. For the commonly used Gaus-
sian kernel K(x,y) = exp(−‖x − y‖2/(2σ2)), p(ω) =
N (0, σ−2Id), where Id is the d× d identity matrix.

Rahimi and Recht [38] showed that the inner prod-
uct of random features uniformly converges to K(x,y)
in probability. In particular, when training samples
are from a compact set X ⊂ Rd, in order to have
P
(
supx,y∈X |〈Φ(x),Φ(y)〉 −K(x,y)|> ε

)
less than a



constant q, the dimension of random features

M = O

(
d

ε2
log

σp diam(X )

qε

)
, (3)

where σ2
p := Ep(ω

>ω) is the second moment of p(ω).

2.2. Compressive sensing and compressive inference

Compressive sensing [3] aims to sense a high-
dimensional signal from a low-dimensional measurements.
Specifically, any d-dimensional, k-sparse signal can be ex-
actly recovered from itsm-compressive measurements, pro-
vided m = O(k log d

k ).
One of the main results in CS is the restricted isometry

property (RIP) [7,8] which suggests that distances between
sparse signals are approximately preserved by certain mea-
surement matrices, including random projections and par-
tial Fourier matrices [39]. A m × d matrix P satisfies RIP
(of order 2k) if for all k-sparse signals x,y ∈ Rd, we have
(1 − δ)‖x − y‖2≤ ‖Px − Py‖2≤ (1 + δ)‖x − y‖2 with
some δ ∈ (0, 1). This means that all pairwise distances
between k-sparse signals are approximately preserved after
projected byP . Sub-Gaussian random matrices and random
orthoprojectors are known to satisfy RIP with high proba-
bility [9, 10]. To generate a m × d random orthoprojector,
we first i.i.d. sample its entries from a zero-mean Gaussian
or Bernoulli distribution. Then we run the Gram-Schmidt
process row-wise (assuming its rows are linearly indepen-
dent) and multiply the result by

√
d/m.

The approximate preservation of distances enables in-
ference directly in the compressive domain. This idea —
termed compressive inference — has resulted in many theo-
retical and practical algorithms for estimation [4,25,33,41]
and classification [1, 6, 11, 15, 16, 23, 28, 31, 36] without the
need of an intermediate reconstruction step. This saves the
computation required to recover the signals and thus, low-
ers the computational and memory requirements of the in-
ference algorithm.

The goal of this paper is to provide theoretical guaran-
tees for applying random features onto compressive mea-
surements. We can, therefore, perform non-linear inference
on compressive inference without sacrificing its benefits —
low time and storage complexities.

3. Random features for sparse signals
The theoretical guarantee of random features provided

in [38] is for generic datasets and does not exploit any
model on the data. If we know that our signals enjoys sparse
representations, either canonically or in some transform ba-
sis, can we tighten the bound required for approximating a
kernel function? We address this question in this section.

The following theorem characterizes the performance of
random features approximating stationary kernel functions
for signals that enjoy sparse representations.

Theorem 1. (Fourier random feature with k-sparse data)
Let X be a compact set of k-sparse vectors in Rd. Let the
random features for a stationary kernel function, Φ, be de-
fined as in (2) with σ2

p = Ep[ω
>ω] being the second mo-

ment of the Fourier transform of the kernel function. Given
ε > 0 and q ∈ (0, 1], there exists a constant c1 > 0, such
that, when

M = c1
k

ε2
log

(
σp diam(X )

qε

d

k

)
, (4)

the probability

P
(

sup
x,y∈X

∣∣∣〈Φ(x),Φ(y)〉 −K(x,y)
∣∣∣ > ε

)
≤ q.

The proof for Theorem 1 is provided in the appendix.
As can be seen from the theorem, the dimension of random
features depends predominantly on the sparsity of the sig-
nal, k, instead of its ambient dimensionality, d. Thereby, for
sparse signals, the bound (4) greatly improves the original
one shown in (3). We note that the factor k log d

k commonly
appears in theoretical results of compressive sensing, e.g.,
for constructingm×d random sub-Gaussian matrices satis-
fying RIP [2] and for ensuring stable recovery of sparse sig-
nals [17]. Since the approximation of kernel function with
random features can be considered as constructing a low-
dimensional embedding of the reproducing kernel Hilbert
space associated with the kernel function [5], it is not sur-
prising that k log d

k appears in our results.
The following corollary extends the above theorem to

signals which are not canonically sparse but are sparse in
some transform basis.

Corollary 1. Suppose a stationary kernel function is also
rotationally invariant, i.e, f(Bδ) = f(δ) for any orthonor-
mal basis B. Let X be a compact set in Rd. Given an
orthonormal basis Ψ, if for all x ∈ X , Ψx is k-sparse, then
Theorem 1 holds on X .

Examples of rotationally invariant stationary kernel
functions include those depending only on the `2-norm of
the signal, like the Gaussian kernel and the B-spline ker-
nel [42]. Since images are often sparse in wavelet bases,
this corollary allows us to apply random features on images
with far-fewer features.

4. Compressive random features

We now consider the application of random features to
compressive measurements. We term this scheme com-
pressive random features. By performing inference di-
rectly with compressive random features, we bypass the
computationally-expensive reconstruction step. For images,
which are originally dense but sparse after transformation,
our scheme effectively reduces computational and storage



costs and enjoys the low signal-acquisition cost provided
by compressive cameras. These benefits make our scheme
compelling in scenarios like Internet-of-things, where de-
vice cost, computation, and storage are of utmost concern.

Can we compute random features directly on the com-
pressive measurements of sparse signals (either canonically
or in a transform basis) without deteriorating its ability to
approximate kernel functions? The following theorem ad-
dresses this question.

Theorem 2. (Compressive random feature) Let X be a
compact set of k-sparse vectors in Rd. Let P : Rd → Rm
be a random orthoprojector constructed as described in
Section 2.2. Let Φ : Rm → RM be the random fea-
tures of an isometric kernel function, defined as K(x,y) =
f(‖x−y‖), with σ2

p = Ep[ω
>ω] being the second moment

of its Fourier transform. Given ε > 0 and q ∈ (0, 1], there
exist constants c1, c2 > 0, such that, when m = c1

k
ε2 log d

k ,
m ≤ d, and

M = c2
m

ε2
log

(
σp radius(X )

qε

d

k

)
, (5)

the probability

P
(

sup
x,y∈X

(|〈Φ(Px),Φ(Py)〉 −K(x,y)|) > ε

)
≤ q.

The proof is provided in the appendix. Comparing to
the bound in Theorem 1, we can see that the effect of di-
mensionality reduction before constructing random features
does not significantly impede its ability to approximate iso-
metric kernel functions. By centering the data, we can re-
duce radius(X ) to diam(X ). Thereby, the requiredM only
increases by an order of 1

ε2 log d
k , but in return we gain the

advantages of reduced device cost, computation, and stor-
age (see Figure 1). In the context of compressive inference,
this theorem provides a guarantee for applying random fea-
tures directly on compressive measurements.

From our experiments in Section 5, we observe that it
is possible to achieve a high compression ratio (m � d)
and still obtain comparable accuracies as those of the typ-
ical random features. The reason may be that Theorem 2
requires all pairwise kernel function values are approxi-
mated; nevertheless, in classification scenarios, we are al-
lowed to heavily compress the data as long as data points
belonging to different classes do not collapse onto each
other [1, 22, 24, 44, 45]. This enables us to use high com-
pression ratios. We leave the analysis as a future work.

4.1. Analysis of storage and time complexity

We now analyze the storage and time complexity for
compressive random features. As can be seen from Fig-
ure 1, if we use compressive cameras, we can get com-
pressive measurements without actual computation, and the

storage costs are O(Nm). Since m = O(k log d), the sav-
ing of storage is large when k � d. For compressive ran-
dom features, it costs O(MNm) to construct and O(MN)
to store; in contrast, typical kernel methods requireO(N2d)
computation and O(N2) storage for a kernel matrix. In the
absence of compressive cameras where we obtain random
sketches by computations, the total computational cost to
construct compressive features isO(Ndm+MNm), which
is smaller than the cost to construct typical random features,
O(MNd), when m is small. We note that the accelerated
random feature construction techniques [29] are also appli-
cable to our compressive random features scheme.

Testing time with our scheme are as follows. It takes
O(Mm) to construct compressive features and O(M) to
perform the inner product. To store a linear SVM, we only
need to store the M+1 coefficients of the separating hyper-
plane. Instead, a typical kernel SVM requires the storage
of all non-zero dual variables and their corresponding train-
ing samples. With large datasets, the number of non-zero
dual variables usually grows linearly with N [26]. To test
an image, typical kernel methods requireO(Nd) to evaluate
the kernel function between the image and training samples.
This makes kernel methods costly during the testing phase
as well. In summary, with compressive random features,
we can achieve nonlinear-class classification performance
with improved storage and time complexity compared to
both original kernel methods and typical random features.

5. Experiments
We conducted experiments on 5 datasets to examine the

classification performance of linear SVMs using our com-
pressive random features. We compared the performance
against six methods, whose legends are as follows:

• Original linear: Linear SVM trained directly with orig-
inal uncompressed data.

• Original kernel: Typical kernel-based SVM trained di-
rectly with original uncompressed data.

• Compressive linear: Linear SVM trained directly on
compressive measurements, a technique commonly used
in prior work [6, 28, 36].

• Compressive kernel: Typical kernel-based SVM trained
directly with compressive measurements.

• Typical random features: Linear SVM trained with
random features applied to the original data.

• Compressive random features: Linear SVM trained
with our compressive random features.

Among the last three methods, the compressive kernel ap-
proach is expected to achieve highest accuracies, since its
kernel function is computed exactly. Further, in spite of un-
dergoing both dimensionality reduction and kernel function
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(d) Random feature construction time (in seconds). For compressive random features,
the random projection time is included. The experiments were conducted on Intel Xeon
CPU E5-2620 2.0GHz with 16GB memory. Note that in our experiments, typical and
compressive random features have similar SVM training and testing time.

Figure 2: MNIST results.

approximation, the proposed compressive random features
is expected to achieve accuracy that is comparable to typi-
cal random features, especially when the dimension of com-
pressive measurements, m, is large enough. We also expect
to achieve accuracies comparable to the kernel-based SVM
when the dimension of random features,M , is large enough
so to precisely approximate the kernel function.

In all experiments, the SVMs are directly trained with
pixel values or their compressive measurements (although
our scheme also supports sparse features, like features
learned by convolutional neural networks). Due to memory
issues, in some instances, we downsampled images. We
use the Gaussian kernel function K(x,y) = exp(−‖x −
y‖2/(2σ2)) in all experiments, with σ kept the same across
different methods. We used C-SVM in LIBLINEAR [21]
with C = 1. Finally, all results are averages over 20 trials.

We briefly introduce the 5 datasets used for validation.

• MNIST [30] contains 60, 000 training images and
10, 000 test images. The 28× 28 gray-scale images con-
tain digits from 0 to 9. We set σ = 10. The results are
shown in Figure 2.

• 8 scene categories dataset [35] contains 256×256 RGB
images of 8 different scenes, like mountain views, streets,
highways, and coast, . . . , etc. There are 2688 images, and

we randomly split them into 2150 training images and
538 test images. We resized images into 32× 32. We set
σ = 8. The results are shown in Figure 3.

• INRIA person dataset [14] contains 128× 64 RGB im-
ages. Each positive image contains a standing person,
and the negative images do not. There are 8506 training
images and 2482 test images. We resized the images to
32×16. We set σ = 5. The results are shown in Figure 4.

• CIFAR-10 [27] contains 32 × 32 RGB images of 10
different objects, like airplanes and horses. Each class
has 5000 training images and 1000 test images. We set
σ = 18. The results are shown in Figure 5.

• Street view house numbers dataset [34] contains 32 ×
32 RGB images. It contains images with different digits
taken from house numbers in Google Street View images.
It has 73257 training images and 26032 test images. We
set σ = 13. The results are shown in Figure 6.

Observations. Across all experiments, compressive ran-
dom features has a performance that is comparable to typ-
ical random features and outperforms compressive linear
SVMs even under high compression ratio (md =0.07). Fur-
ther, as shown in Figure 2d, working with dimensionality-
reduced compressive measurements effectively reduces the
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Figure 3: 8 scene categories dataset results.
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Figure 4: INRIA person dataset results.

time to construct random features. In some datasets, we
observe that when the dimension of random feature M is
small, compressive linear SVMs are able to achieve better
accuracies than both compressive random features and typ-
ical random features. This could be due to poor approxi-
mations of the kernel similarities at small values of M . As
expected, when using larger values of M , both random fea-
ture methods achieve higher accuracies.

Looking at the results of CIFAR-10 and the street view
house numbers datasets, all these methods still have room
for improvement compared with state-of-the-art methods
like convolutional neural networks (CNN). This gap in per-
formance can be attributed, in part, to our reliance on pixel-
values as the underlying features.

6. Conclusion and discussion
We propose compressive random features, a framework

for kernel-based inference on compressive measurements
that enjoys low acquisition, computation, and storage costs,
along with theoretical guarantees on its ability to approxi-
mate kernel similarities. In the context of compressive in-
ference, we introduced a novel method to perform scalable
nonlinear inference. Thereby, for many applications, our
scheme provides an effective solution that provides a trade-
off between inference performance and design considera-

tions like cost, computation, and storage. Finally, we note
that even though we focused on sparse signals and station-
ary kernel functions, we conjecture that similar results can
be derived for low-dimensional smooth manifolds and for
dot-product kernels.

Comparison to the Nyström method. The Nyström
method [18] is another popular method for large-scale
kernel-based inference. By first obtaining a low-rank ap-
proximation of the kernel matrix, the Nyström method ob-
tains eigen-decomposition of the low-rank matrix and gen-
erates features using the eigenvectors. Since this process in-
volves learning from data, the Nyström method can achieve
better performance by exploiting structures specific to the
dataset. However, the dependency on training data also
makes the Nyström method less flexible than random fea-
tures, whose feature construction function can be designed
independent to the overall training-testing process. In this
context, we can view the results in this paper as a potential
approach to incorporate more knowledge of the signal into
random features without having to perform learning.

A. Proofs
As discussed in Section 2.2, random orthoprojectors sat-

isfy RIP with high probability. We state the following theo-
rem which will be utilized to prove our theorem.
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Figure 5: CIFAR-10 dataset results.
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Figure 6: Street view house numbers dataset results.

Theorem 3. Let P : X → Rm be a m × d random
orthoprojector constructed as described in Section 2.2.
If X is the set of k-sparse vectors in Rd and m ∈[

log(2)+k log(12/δ)+k log(ed/k)
δ2/16−δ3/48 , d

]
, then for δ ∈ (0, 1) we

have

P
{
∀x ∈ X , (1− δ)‖x‖2≤ ‖Px‖2≤ (1 + δ)‖x‖2

}
≥ 1− 2

(
12

δ

)k(
ed

k

)k

exp

(
−
(
δ2

16
− δ3

48

)
m

)
.

(6)

The proof of the theorem is a simple extension of the
results in [2].

Proof of Theorem 1. The difference of two k-sparse vec-
tors is at most 2k-sparse. Let z := 2k. For any x,y ∈
X , x−y belongs to one of the

(
d
z

)
z-dimensional sub-

spaces, M1, . . . ,M(d
z)

. Each Mj , j=1, . . . ,
(
d
z

)
, is com-

pact and has diameter at most twice diam(X ). Thus, we
can construct a ε-net in each of Mj , j=1, . . . ,

(
d
z

)
, and

{x−y|∀x,y ∈ X} ⊆ ∪(d
z)
j=1Mj . Each net will have at

most T = (2 diam(X )/r)z balls of radius r [20, Chap-
ter 5]. Denote ∆ as (x,y) and M as {∆|∀x,y∈X}. Let
∆i,j , i = 1, . . . T be the i-th center in the ε-net ofMj . De-
fine f :M→ R, f(∆) := 〈Φ(x),Φ(y)〉−K(x,y) and let
Lf be the Lipschitz constant of f . By limiting Lf and mak-
ing sure that all f(∆i,j) are small, we can provide a bound

to the overall approximation error:

P
(

sup
∆∈M

|f(∆)|> ε

)
≤ P

(
Lf >

ε

2r

)
+ P

(
∪(dz)

j=1 ∪
T
i=1 {|f(∆i,j)|>

ε

2
}
)
.

(7)

Let ∆∗ = arg max∆∈M‖5f(∆)‖. By expanding Φ(x) =
ejWx, where i-th row of W contains ωi, we have

E[L2
f ] = E‖∇f(∆∗)‖2= E‖∇(〈Φ(∆∗),Φ(0)〉)‖2

−E‖∇K(∆∗,0)‖2≤ E‖∇(〈Φ(∆∗),Φ(0)〉)‖2≤ E‖ω‖2= σ2
p,

as [38], we use Markov’s inequality and get

P
(
Lf ≥

ε

2r

)
= P

(
L2
f ≥

( ε
2r

)2
)
≤
E[L2

f ](
ε

2r

)2 ≤ (2rσp
ε

)2

.

Using a union bound and Hoeffding’s inequality, we have

P
(
∪(d

z)
j=1 ∪

T
i=1 {|f(∆i,j)|>

ε

2
}
)
≤ 2

(
d

z

)
T exp

(
−Mε2

8

)
.

Because
(
d
z

)
≤
(
ed
z

)z
, we can bound (7) by

P
(

sup
∆∈M

|f(∆)|> ε

)
≤
(

2rσp

ε

)2

+ 2

(
ed

z

)z (
2 diam(X )

r

)z

exp

(
−Mε2

8

)
= 2

[(
2ed diam(X )

z

)z

exp

(
−Mε2

8

)]
r−z +

(
2σp

ε

)2

r2

:= 2αr−z + βr2.



Minimizing the right hand side w.r.t. r results in r =

(αzβ )
1

z+2 . After substituting r, the right hand side becomes

α
2

z+2 β
z

z+2

(
2z
−z
z+2 + z

2
z+2

)
, and we have

P
(

sup
∆∈M

|f(∆)|> ε

)
≤
(
edσp diam(X )

zε

) 2z
z+2

exp

(
−Mε2

4(z + 2)

)(
2z
−z
z+2 + z

2
z+2

)
≤ 3

(
2edσp diam(X )

zε

) 2z
z+2

exp

(
−Mε2

4(z + 2)

)
.

The last inequality holds because
(

2z
−z
z+2 + z

2
z+2

)
≤ 3 for

all z ≥ 1. Setting an upper bound for the right hand side
and solving for M will prove the theorem.

Proof of Corollary 1. We use the following property of
multi-variant Fourier transform:

F (f(Bx)) =
1

det(B)
(Ff)(B−Tω).

Since B is a orthonormal basis and f is rotational invariant,
we have

p(ω) = F (f(x)) = F (f(Bx)) = (Ff)(B−Tω) = p(Bω).

Therefore, p is rotational invariant. Let α = B>x for all
x ∈ X . We have ω>x = ω>Bα = (B>ω)>α := z>α.
Since p is rotational invariant and ω ∼ p, z ∼ p. So Theo-
rem 1 can be applied to α, which is k-sparse.

The sketch to prove Theorem 2 is as follows. In order to
uniformly bound the approximation of kernel function with
compressive features, we simply need to uniformly bound
the errors caused by compressive sensing and random fea-
ture approximation separately.

Proof of Theorem 2. Let f(‖x−y‖) := K(x,y), ∀x,y.
By triangular inequality, we have

P
{

sup
x,y∈X

(∣∣∣〈Φ(Px),Φ(Py)〉 −K(x,y)
∣∣∣) > ε

}
≤ P

{
sup

x,y∈X

(∣∣∣〈Φ(Px),Φ(Py)〉 − f(‖Px− Py‖)
∣∣∣

+
∣∣∣f(‖Px− Py‖)− f(‖x− y‖)

∣∣∣) > ε

}
≤ P

{
sup

x,y∈X

(∣∣∣〈Φ(Px),Φ(Py)〉 − f(‖Px− Py‖)
∣∣∣) >

ε

2

}
+ P

{
sup

x,y∈X

(∣∣∣f(‖Px− Py‖)− f(‖x− y‖)
∣∣∣) >

ε

2

}
(8)

Let DP be the diameter of PX and D = 2 radius(X ).
Using the result in [38], we can bound the first term:

P
{

sup
x,y∈PX

(∣∣∣〈Φ(x),Φ(y)〉 − f(‖x− y‖)
∣∣∣) >

ε

2

}
≤ 210

(
σpDP

ε

)2

exp

(
−Mε2

16(m+ 2)

)
≤ 210 d

m

(
σpD

ε

)2

exp

(
−Mε2

16(m+ 2)

)
.

The last inequality holds because by the construction of ran-

dom orthoprojector ‖Px‖≤
√

d
m‖x‖ for all x. The second

term can be bounded as follows. Since f is differentiable
and continuous and X is compact, the derivative of f at-
tains its maximum and minimum in X . Therefore, the ker-
nel function is Lipschitz continuous in X . Let L be the
Lipschitz constant. By Theorem 3, we have ∀x,y ∈ X ,
|‖Px−Py‖−‖x−y‖| ≤ δ‖x−y‖≤ δD with probability
at least 1 − 2 exp(−c1δ2m). By the definition of Lips-
chitz continuous we have |f(‖Px− Py‖)− f(‖x−y‖)| ≤
δDL. Thus, by setting δ = ε

2DL , we bound the second term
using (6). Therefore, we have the following result:

P
{

sup
x,y∈X

(∣∣∣〈Φ(Px),Φ(Py)〉 −K(x,y)
∣∣∣) > ε

}
≤ 210 d

m

(
σpD

ε

)2

exp

(
−Mε2

16(m+ 2)

)
+ 2

(
24DL

ε

)k(
ed

k

)k

exp

[
−
(

ε2

64D2L2
− ε3

384D3L3

)
m

]
.

(9)
When m is large enough, the second term is less than
the first term, the right hand side of (9) is less than

211 d
m

(
σpD
ε

)2

exp
(
−Mε2

16(m+2)

)
. To make it less than a con-

stant probability, we need

M = O

(
m

ε2
log

dσpD

mε

)
.
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