

Propagated Image Filtering

Jen-Hao Rick Chang¹ and Yu-Chiang Frank Wang²

¹Dept. ECE, Carnegie Mellon University and ²Research Center for IT Innovation, Academia Sinica

Image Filtering

- Image processing tasks such as denoising, smoothing, and fusion with image context properly preserved.
- Edge-preserving filters
- Avoid blending the characteristics of adjacent image regions.

With edge-preserving

Related Work

General formulation for image filtering

$$I'_s \leftarrow \frac{1}{Z} \sum_{t \in \mathcal{N}(s)} w_{s,t} I_t, \ Z = \sum_{t \in \mathcal{N}(s)} w_{s,t}, \ \mathcal{N}(s)$$
: neighbors of s

edge-preserving

Bilateral filter

$$w_{s,t} = g(\|s - t\|; \sigma_s) g(\|I_s - I_t\|; \sigma_r), \ g(x; \sigma) = e^{\frac{-x^2}{2\sigma^2}}$$

Geodesic filter

$$w_{s,t} = g_r \left(\sum_{x,x+1 \in s,...,t} ||I_x - I_{x+1}|| \right)$$

Propagation Filter

- Main idea:
- Filter weight $w_{s,t}$ as the probability of pixel t related to s.
- Definition in 1D (by Bayes' rule):

- adjacent photometric relationship photometric relationship
- In other words, t related to $s := (t-1 \text{ related to } s) \land (I_t \approx I_{t-1}) \land (I_t \approx I_s)$
- For simplicity, we have $D(x,y) = R(x,y) = g(||I_x - I_y||; \sigma_r)$
- For filtering in 2D (i.e., images):
- Use predefined filtering patterns (see below) instead of determining the shortest path between pixels s and t.
- Filter weights can be reused (i.e., propagated).
- Parallel processing and early termination for speedup.
- Theoretical supports:
- Robust estimation
- Belief propagation

 $\sigma_{\rm s} = 10, \, \sigma_{\rm r} = 40$ $w = 5, \sigma_r = 40$ $\sigma_{\rm s}=5,\,\sigma_{\rm r}=40$ \bullet Image denoising: images with Gaussian white noise (σ =0.05)

Flash / no-flash image denoising

No-Flash Image Flash Image

Guided Filter

Joint Bilateral

 $w = 10, \sigma_r = 40$

Joint Propagation

 $w = 10, \sigma_r = 40$

 $w = 5, \sigma_r = 40$