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Abstract

We propose the propagation filter as a novel image filter-

ing operator, with the goal of smoothing over neighboring

image pixels while preserving image context like edges or

textural regions. In particular, our filter does not to utilize

explicit spatial kernel functions as bilateral and guided fil-

ters do. We will show that our propagation filter can be

viewed as a robust estimator, which minimizes the expected

difference between the filtered and desirable image outputs.

We will also relate propagation filtering to belief propaga-

tion, and suggest techniques if further speedup of the filter-

ing process is necessary. In our experiments, we apply our

propagation filter to a variety of applications such as im-

age denoising, smoothing, fusion, and high-dynamic-range

(HDR) compression. We will show that improved perfor-

mance over existing image filters can be achieved.

1. Introduction

Image filtering is a process of updating pixel values in an

image to achieve particular goals like denoising, smoothing,

enhancement, or matting. It typically requires the extraction

of particular image characteristics, while undesirable pat-

terns like noise or irrelevant textural regions need to be dis-

regarded. If cross-region mixing occurs during the filtering

process, i.e., the characteristics of adjacent image regions

are blended, the output image would contain blurry regions

which result in degraded visual quality.

Bilateral [22, 24] and guided filters [14] are popular

edge-preserving image filters, which are able to alleviate

the aforementioned problem during the filtering process.

The idea of these filters is to observe and process neigh-

boring pixels with similar pixel values, so that desirable im-

age context can be preserved. Both bilateral and guided

filters have been successfully applied to a variety of appli-

cations such as noise reduction [1, 16, 20, 8], tone manage-

ment [2, 7, 21, 9], and image fusion [15]. However, these

filters require predefined pixel neighborhood regions (via

spatial functions or kernels), which are typically difficult to

determine beforehand. For example (and as discussed later

in Section 3), choosing a large neighborhood for highly tex-

tural regions would result in cross-region mixing, while se-

lecting a small one would limit the filtering performance.

Recently, Lu et al. [17] tackled this problem by threshold-

ing neighborhoods within a predefined pixel value differ-

ence. Instead of predefined pixel neighborhoods, geodesic

filtering [5, 12] dynamically determines their filtering ker-

nels by calculating the accumulated difference between the

values of adjacent pixels. As discussed in Section 3, al-

though geodesic filters have shown promising results for

denoising tasks, they still suffer from cross-region mixing

in smoothing and other filtering tasks.

In this paper, we propose a propagation filter for solving

the above tasks. Our propagation filter is able to observe

and preserve image characteristics without the need to ap-

ply explicit spatial kernel functions. We will show that our

filtering process can be regarded as a one-step estimator,

which minimizes the expected error between the filtered and

desirable image outputs. In the experiments, we consider

several image processing applications such as image de-

noising/smoothing, image fusion, and high-dynamic-range

(HDR) imaging. We will verify that our proposed filter

would perform favorably against existing bilateral, guided,

and geodesic filters on the above tasks.

2. Related Work

2.1. Bilateral Filtering

Well known as an edge-preserving filter, the bilateral fil-

ter [22] calculates the value for pixel s as follows:

I
′
s =

1

Zs

∑

t∈Ω
g(dBF(s, t);σs) g(dBF(Is, It);σr) It, (1)

where I′s is the filtered output at pixel s, Ω denotes the set

of pixels t in the input I, and g(x;σ) is a Gaussian func-

tion with variance σ2. For bilateral filters, the spatial and

photometric distances between pixels s and t are defined as:

dBF(s, t) = ‖t− s‖, and dBF(Is, It) = ‖It − Is‖, (2)
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which calculate the Euclidean distance between their lo-

cations and that between their pixel values, respectively.

In (1), Zs is the normalization term, which is calculated

as Zs =
∑

t∈Ω g(dBF(s, t);σs) g(dBF(Is, It);σr). Thus, bi-

lateral filtering considers both spatial and photometric dis-

tances between pixel values, and applies the weighted pixel

value as the filtered output.

Yang [24] proposed a recursive version of bilateral filter-

ing, which defines the photometric distance in (1) as

dBF(Is, It) =
√

∑

x, x+1∈φ
‖Ix+1 − Ix‖2, (3)

where φ is a predefined path connecting pixels s and t. It

can be seen that, recursive bilateral filtering calculates pho-

tometric distances by accumulating the distances between

adjacent pixels along the path φ. While this modification

decreases the computation costs for bilateral filtering, the

price to pay is the ability in preserving image edges. In

other words, cross-region mixing is more likely to occur.

2.2. Guided Filtering

The goal of guided filtering [14] is to filter the input im-

age I based on a guidance image Ig . It assumes that the fil-

tered output at pixel s is a linear transformation of the pixels

(within a window Wk) of Ig . More specifically, the output

image can be represented as I ′s=
∑

t∈N (s)w
g
s,t It, where

w
g
s,t=

1
|W |2

∑

k∈{k|s,t∈Wk}

(

1+

(

I
g
s−µk

)(

I
g
t −µk

)

σ2
k
+ǫ

)

. (4)

Note that |W | indicates the window size, and the param-

eters µk and σ2k are the mean and variance of pixel values

in window Wk of Ig , respectively. The guided filter is con-

trolled by two parameters: w and ǫ; the former parameter

determines the window radius, and the latter controls the ex-

tent of smoothing (i.e., a large ǫ produces highly smoothed

outputs). As noted [14], guided filtering with w = σs and

ǫ = σ2r would produce comparable outputs as the standard

bilateral filtering with σs and σr does, while lower compu-

tation costs can be achieved.

2.3. Geodesic Filtering

Without applying explicit spatial kernels, geodesic fil-

tering [12] utilizes only photometric distances during the

filtering process. It calculates the output at pixel s by

I′s = 1
Zs

∑

t∈N (s)g(dGF(Is, It) ;σr) It, where Zs is the

normalization factor, and N (s) contains neighboring pix-

els of s. For geodesic filtering, the photometric distance

between pixels s and t is defined as

dGF(Is, It) = min
φ

∑

x, x+1∈φ
‖Ix+1 − Ix‖, (5)

where φ is the path connecting pixels s and t. It is clear that

this path is determined by the minimum value of the accu-
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Figure 1: Illustration of cross-region mixing (in 1D) for pixels in

textural image regions. The value of pixel x is denoted as I(x),
and the dotted lines indicate the weights derived by different filters

(we choose σs = 10 for the bilateral filter, and σr = 0.1 for all

filters). Note that we intentionally disregard noisy pixels between

pixels p and q, so that the characteristics of geodesic filters can be

better illustrated.

mulated differences between adjacent pixel values connect-

ing s and t. This makes geodesic filters adaptive to image

context, and thus perform well in image denoising (espe-

cially with small σr). However, as discussed in Section 3.2,

geodesic filters suffer from cross-region mixing in image

smoothing tasks (i.e., with larger σr). Although Crimin-

isi et al. [5] further incorporated predefined spatial distances

into (5) for alleviating the above problem, additional efforts

would be required for parameter selection in their work.

3. Propagation Filtering

As illustrated in Figure 1, cross-region mixing is a typi-

cal problem for existing filters when performing image pro-

cessing tasks like denoising or smoothing. For example,

although bilateral filters measure the photometric distances

between pixels for determining the filter weights, their use

of explicit spatial filtering kernels would inevitably assign

weights to pixels across image regions. On the other hand,

geodesic filters utilize image context information for filter-

ing by accumulating the value differences from adjacent

pixels. However, when adjacent image regions are of dif-

ferent types of context but noise-free, it would not be able

to suppress their effects and thus result in cross-region mix-

ing (e.g., dGF(Is, Ip) ≈ dGF(Is, Iq) in Figure 1).

To suppress undesirable information from adjacent or

neighboring pixels during filtering, we propose the propa-

gation filter which aims at taking the context information

between image pixels into consideration. Without using

any explicit spatial functions, we develop our filter from

a probabilistic point of view, as detailed in the following

subsections. We will show that our propagation filter essen-

tially cooperates the merits of bilateral and geodesic filter-

ing, while comparable computation costs can be obtained.
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3.1. The One­Dimensional Case

Given an input image I, the filtered output I′s at pixel s

produced by our propagation filter is calculated by

I
′
s =

1

Zs

∑

t∈N (s)

ws,t It, (6)

where It denotes the value at pixel t in I, and N (s) indicates

the set of neighboring pixels centered at s. We have ws,t as

the weight for each pixel t to perform the filtering of Is,

while Zs =
∑

t∈N (s)ws,t as the normalization factor for

ensuring the sum of all ws,t equal to 1.

We first define that pixels y is photometrically related to

pixel x, or x
r−→ y, if x and y have similar pixel values. In

addition, if y is also adjacent to x, we say that y is adjacent-

photometrically related to x, or x
a−→ y. Given these two

types of photometric relationships, we define the pixel rela-

tionship as follows:

Definition 1. Suppose there are n singly connected pix-

els 1, . . . , n, in which s and t are two pixels satisfying

1 ≤ s < t ≤ n without the loss of generality. Pixel t is re-

lated to pixel s, or s→ t, if and only if s→ t−1, t−1
a−→ t,

and s
r−→ t. In addition, each pixel is always self-related,

i.e., s→s.

In other words, for pixel t being related to pixel s, the in-

termediate pixels between s and t not only need to be photo-

metrically related to s, they are also required to be adjacent-

photometrically related to their predecessors (as depicted in

Figure 2a). As a result, we derive the filter weight ws,t by

the following definition:

Definition 2. Suppose there are n singly connected pixels,

1, . . . , n, and pixels s and t satisfying 1 ≤ s ≤ t ≤ n. The

weight ws,t for filtering pixel s with pixel t is the probability

value of t being related to s, i.e., P (s→ t).

If t = s, we have ws,s = P (s→ s) = 1. As for t 6= s,

based on Definitions 1 and 2, we calculate the weight ws,t
by the Bayes’ rule:

ws,t ≡ P (s→ t) = P
(

s→ t−1 ∧ t−1
a−→ t ∧ s

r−→ t
)

= P (s→ t−1) P
(

t−1
a−→ t ∧ s

r−→ t | s→ t−1
)

= ws,t−1 P
(

t−1
a−→ t |s→ t−1

)

P
(

s
r−→ t |s→ t−1∧t−1

a−→ t
)

≡ ws,t−1 D(t−1, t) R(s, t) . (7)

It can be seen that, P (s → t−1) in (7) is replaced by

ws,t−1, while the third equality holds due to P (A∧B |
C) = P (A | C)P (B | A∧C). Since t−1

a−→ t and s → t−1

are independent events, we have P
(

t−1
a−→ t |s→ t−1

)

=

P
(

t−1
a−→ t
)

≡ D(t−1, t), denoting the adjacent photomet-

ric relationship between pixels t and t−1. By assuming that

s

t-1

t

(a)

s

p

q

t

(b) (c)

Figure 2: Illustration of propagation filtering. (a) the definition of

filtering weight ws,t, (b) the calculation of ws,t, and (c) the pattern

for performing 2D filtering with d = 3 pixels.

the probability value of two adjacent pixels being photomet-

ric related is proportional to the value of a Gaussian function

of their pixel value difference, we define

D(x, y) = g(‖Ix − Iy‖;σa) = exp

(

−‖Ix − Iy‖2

2σ2a

)

, (8)

where Ix is the value of pixel x, and ‖Ix−Iy‖ measures the

Euclidean distance between the corresponding pixel value

difference.

As for R(s, t) in (7), we have R(s, t) =

P
(

s
r−→ t |s→ t−1 ∧ t−1

a−→ t
)

, which calculates the photo-

metric relationship between pixels s and t. With s → t−1

and t−1
a−→ t, pixel t is viewed as adjacent to pixel s,

and thus R(s, t) is measured as the adjacent-photometric

relationship between s and t. As a result, we define

R(x, y) = g(‖Ix − Iy‖;σr) = exp

(

−‖Ix − Iy‖2

2σ2r

)

. (9)

For simplicity, we choose σa = σr , and thus D(·) = R(·).
We use Figure 2a and 2b to illustrate how to calculate ws,t.

Based on the above definitions, we see that a large weight

ws,t not only needs pixels s and t to have a strong photo-

metric relationship (i.e., similar pixel values), it also needs

large ws,t−1 and D(t−1, t) values for the intermediate pix-

els between s and t. That means, if any pixel along the path

connecting pixels s and t is unrelated to either of them, t

will be viewed as unrelated to s. In other words, a small

ws,t will be resulted. This is the reason why our propaga-

tion filter is able to reflect image context information when

performing filtering.

3.2. Comparison to Bilateral and Geodesic Filtering

We now compare propagation filtering with bilateral and

geodesic filtering. For our propagation filters, we derive the

filter weights from a probability point of view. To be more

precise, by expanding (7), we obtain the filtering weights

ws,t in (6) regarding the pixel distances as:
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ws,t = g
(

d
a
PF(Is, It); σa

)

g
(

d
r
PF(Is, It); σr

)

(10)

d
a
PF(Is, It) =

√

∑

x,x+1∈φ
‖Ix+1 − Ix‖2 (11)

d
r
PF(Is, It) =

√

∑

x∈φ
‖Ix − Is‖2, (12)

Note that φ is the path connecting pixels s and t. Our propa-

gation filter inherits merits from both bilateral and geodesic

filters while compensating their deficiencies. That is, in-

stead of using explicit spatial kernels, we have d aPF(Is, It)

utilize intermediate adjacent pixel information between s

and t, which is similar to the photometric distances applied

in geodesic filtering (5) and recursive bilateral filtering (3).

The deficiency of geodesic filters is complemented by

d rPF(Is, It), which measures the photometric distance be-

tween pixels along the path of interest. As noted earlier,

geodesic filters cannot suppress effects from nearby image

regions well, especially when only negligible noise is ob-

served in those regions (e.g., dGF(Is, Ip) ≈ dGF(Is, Iq) in

Figure 1). Instead, our propagation filter is able to observe

large d rPF(Is, Ip) and d rPF(Is, Iq) and have ws,q < ws,p. This

would alleviate cross-region mixing problems, and this is

the reason why propagation filters better discriminate be-

tween image regions with different context information.

To sum up, incorporating both d aPF(Is, It) and d rPF(Is, It)

makes our propagation filters more adaptive to image con-

text information. As verified later, this allows one to obtain

satisfactory filtering results than bilateral and geodesic fil-

ters do in several image processing tasks.

3.3. The Two­Dimensional Case

For image filtering, we now extend the above process

to two-dimensional scenarios. Given pixels s and t in an

image, we need to first determine a path connecting s and

t for deriving the weight ws,t accordingly. Although one

can apply the Dijkstra’s shortest path algorithm [6] to de-

termine the path with the largest weight ws,t (like geodesic

filters [12] do), the resulting computation complexity will

be O(W log(W )). In other words, filtering an image with a

total of N pixels will cost O(NW log(W )), which is com-

putationally expensive when W or N is large.

Instead, similar to [24] and [3], we consider a particular

2D pattern for filtering all pixels in an image. The pattern

we propose is shown in Figure 2c. It can be seen that, the

path would be a straight line connecting pixels s and t, if

these two pixels are horizontally or vertically aligned. If

pixels s and t are not simply horizontally or vertically con-

nected, we determine the path based on their Manhattan dis-

tance. That is, if the Manhattan distance between s and t is

an odd number, we choose the path for traversing from that

pixel to its predecessor (e.g., from t to t−1) in the vertical

direction; otherwise, the horizontal path will be chosen.

By using this 2D pattern for filtering, the computation

complexity of our propagation filter will be reduced to

O(NW ). It is the same as that of a standard bilateral fil-

ter, and smaller than that of a geodesic filter (requiring

O(NW log(W )) operations). For example, our filter with

w = 10 used 2.4 seconds to filter one million pixels on a

Intel Core i7 machine. In contrast, a geodesic filter [12]

with the same setting took 23 seconds. It is worth not-

ing that, one cannot directly apply methods like frequency

transform [18]) or recursive implementations [24] for prop-

agation filtering, since the derivation of the filter weights

does not affect those for other pixels in the same image.

However, due to this exact property, our propagation filter-

ing can be easily parallelized and speedup by using multi-

core processing techniques.

3.4. Propagation Filtering as a Robust Estimator

We now show that our proposed propagation filter can be

viewed as a one-step estimator, which aims at minimizing

the error between the filtered and desirable outputs (e.g.,

denoised or smoothed images). To start, we first transform

our filtering algorithm of (6) into the following formulation:

I
′
s =

1

Zs

∑

t∈N (s)

ws,t It = Is − 1

Zs

∑

t∈N (s)

ws,t (Is − It).

(13)

The above equation is effectively a gradient descent solver

optimizing the objective function f , whose gradient at pixel

s is derived as:

▽f =
∑

t∈N (s)

ws,t (Is − It) . (14)

With this gradient solver, the optimization problem can be

recovered as:

min
I

∑

s∈Ω

∑

t∈N (s)

∫

ws,t (Is − It) d(Is − It), (15)

where Ω denotes the pixel set of the input image. According

to Definition 2, the weight ws,t represents the probability

of pixel t related to s. As noted earlier, our propagation

filter assumes that related pixels exhibit similar pixel values.

Therefore, we apply ws,t as the belief P (Is − It) and have
∫

ws,t (Is − It) d(Is − It) =
∫

P (s → t) (Is − It) d(Is −
It) ≡

∫

P (Is − It) (Is − It) d(Is − It), which indicates the

expectation of the difference between pixels s and t with

probability P (s→ t). Now, we can rewrite (15) as:

min
I

∑

s∈Ω

∑

t∈N (s)

E [Is − It] . (16)

From (16), we see that our propagation filtering is a one-

step estimator, which minimizes the expected difference be-

tween each filter pixel and its related ones (i.e., the neigh-

boring ones with similar context information).
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As noted in [7, 13], bilateral filtering can also be con-

sidered a one-step estimator for achieving the above goal.

However, as discussed in the beginning of Section 3, bi-

lateral filtering is more likely to encounter the problem of

cross-region mixing due to its use of predetermined spatial

kernel functions, and thus limits its ability in adapting the

image context. Later in Section 4 (and in the supplemen-

tary materials), we will further verify the effectiveness and

superiority of our propagation filter.

3.5. Propagation Filtering as Belief Propagation

We now show that propagation filtering can be viewed as

belief propagation with a Bayesian network. As depicted in

Figure 2c, our 2D path pattern for image filtering is a poly-

tree (i.e., a directed acyclic graph). We now show that our

filtering process is equivalent to the polytree algorithm [19].

Let Xt as the random variable representing that pixel t is

related to pixel s. A Bayesian network can be constructed

using our proposed 2D pattern, which reflects the depen-

dency between its nodes. By Definition 1, we have s and

t−1 as the parent nodes of t, and t+1 as its child node.

Since there only exists a single directed path from t to

t+1, the probability P (Xt) can be expressed as P (Xt) =

P (Xs)P (Xt−1 |Xs)P (Xt |Xs∧Xt−1), where P (Xs) and

P (Xt−1 |Xs) indicate the beliefs of Xs and Xt−1.

We now show that P (Xt) is effectively the weight ws,t
as determined in our propagation filter. According to Def-

inition 2, since pixel s is to be filtered, we have P (Xs) =

ws,s = 1 and P (Xt−1 |Xs) = P (Xt−1) = ws,t−1. Based

on the same definition, we calculate P (Xt | Xs,Xt−1)

by P (t−1
a−→ t ∧ s

r−→ t | s → t−1), and thus P (Xt) =

ws,t−1P (t−1
a−→ t ∧ s

r−→ t | s → t−1), which is the same

as (7). From the derivations, we have P (Xt) = ws,t, which

verifies that our propagation filtering can be regarded as the

belief propagation polytree algorithm.

3.6. Speedup

In addition to parallelization processing by multi-core

techniques, further acceleration for propagation filtering

can be achieved by early cutoff in the derivation of the fil-

ter weights. Recall that the weights of propagation filters

are calculated by (7). If the weight of pixel t for filter-

ing s is small, its successors (e.g., t+1) will also exhibit

low weight values based on the derivations provided in Sec-

tion 3.1. Therefore, one can apply a threshold into the fil-

tering process for allowing early termination of weight cal-

culation. Moreover, it would further prevent undesirable

filtering effects such as cross-region mixing.

To support the above speedup strategy, we observe im-

age statistics from a thousand of images randomly collected

from the Internet1. Using d = 20 for performing propaga-

1Flickr.com
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Figure 3: PSNR and SSIM comparisons for image denoising. (a)

and (b) show the best PSNR and SSIM results for each σs (or w)

value with the optimal σr (or
√
ǫ), while (c) and (d) present those

for each σr (or
√
ǫ) value using the optimal σs (or w).

tion filtering, about 30% of the filter weights for the image

pixels are lower than 0.001 if σr = 0.1 is chosen. If a smaller

σr = 0.01 is selected (which better preserves image details

during image smoothing), approximately 80% of the filter

weights are lower than 0.001. In other words, if 0.001 is

used as the threshold for early cutoff, 80% of the original

computation time can be saved.

4. Applications and Experimental Results

Denoising

We now apply our propagation filter to a variety of appli-

cations in computer vision and graphics. We first consider

the task of image denoising, and we choose to add white

Gaussian noise with the standard deviation of 0.05 to the

input image2. We compare the denoised outputs produced

by bilateral, guided, geodesic, and our propagation filters.

Note that the pixel values of gray-scale images in our ex-

periments are in the range of [0, 1].

For parameter selections, we assign the same σr for bi-

lateral, geodesic, and propagation filters. This would allow

these filters to exhibit the same ability in determining the

photometric relationships between image pixels. We vary

σs of the spatial Gaussian function for the bilateral filter,

and discuss the corresponding results. On the other hand,

the Manhattan distance w = σs is applied as the window

radii for both propagation and geodesic filters. In addition,

we consider bilateral-cut with the same σs and σr choices,

and perform filtering with the above window setting. For the

guided filter, we choose w = σs and ǫ = σ2r for producing

comparable results as the bilateral filter does (as suggested

in [14]). Note that no early cutoff for accelerating the prop-

agation filtering is performed in the experiments.

2By courtesy of http://www.flickr.com/photos/jon-luke/4711647414.
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Figure 4: Example results of image denoising (with the highest

PSNR for each filter).

We apply the metrics of PSNR and SSIM for quantitative

evaluation. For fair comparisons, we always fix one param-

eter (e.g., σs or w) for all filters and vary the other one (e.g.,

σr or ǫ) for reporting the best denoising performance. The

highest PSNR and SSIM values are presented in Figure 3.

From Figures 3a and 3b, we see that our propagation filter

achieved satisfactory PSNR or SSIM values across different

w, and it consistently outperformed bilateral and guided fil-

ters. It can be seen that, while larger w (or σs) would cause

cross-region mixing for existing filters, our use of pixel pho-

tometric relationships for filtering is able to alleviate such

undesirable artifacts.

From Figures 3c and 3d, we see that bilateral and guided

filters produced higher PSNR and SSIM values than ours

did when σr was below 0.1. This is because that, when a

very small σ2r is set (e.g., lower than the variance of the

added noise), our propagation filter will consider the cor-

rupted pixels as outliers, due to the observed low photo-

metric relationships. This effectively terminates the prop-

agation process and reduces the neighborhood size. This

characteristic limits the denoising performance of propaga-

tion filters with small σr . Nevertheless, when reasonable

σr values were chosen, our propagation filter achieves high

PSNR and SSIM values. It can also be seen that even though

geodesic and propagation filters have similar denoising per-

formance (i.e. the highest PSNR value), when σr is large,

the geodesic filter produces low PSNR and SSIM values.

The results verify our discussions earlier in the section that

the geodesic filter cannot prevent cross-region mixing es-

pecially when σr is large. This will also be shown in our

smoothing results. Figure 4 compares the denoised outputs

Original Image Bilateral-Cut Filter
σs = 5, σr = 0.3

Bilateral-Cut Filter
σs = 20, σr = 0.3

Guided Filter 
w = 5, ε = 0.32

Geodesic Filter
w = 5, σr = 0.3

Geodesic Filter
w = 20, σr = 0.3

Recursive Bilateral
σs = 5, σr = 0.3

Propagation Filter
w = 5, σr = 0.3

Propagation Filter
w = 20, σr = 0.3

Figure 5: Example results of image smoothing.

of different filters with the highest PSNR. It can be seen

that, more image details were successfully preserved by our

propagation filter. More examples can be found in the sup-

plemental materials.

To further compare our approach with optimization-

based image filters, we consider recent approaches of [10,

23]. With the same test inputs and experiment settings,

degraded performances were observed (−0.5 and −2.3 in

PSNR, and −0.01 and −0.03 in SSIM for [23] and [10], re-

spectively). We note that, the above optimization-based im-

age filters focus on decomposing the input image into base

and detailed layers. Such strategies might not be prefer-

able for denoising or smoothing, since solving these tasks

require the filtering algorithms to preserve image local de-

tails. In [11], 2D image filtering is approximated by iter-

ating the 1D ones via isometric transforms. Our filter also

achieved improved results when comparing to [11] (0.76 in

PSNR and 0.026 in SSIM). We believe that this is due to the

2D filtering approximation considered in [11], which tends

to encounter cross-region mixing problems during the de-

noising process.

Image Smoothing

Extended from image denoising, image smoothing fur-

ther suppresses image detailed information (e.g., highly tex-

tural regions), while strong image context can be preserved

(e.g., edges). In addition to the grayscale image of Fig-
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Figure 6: Examples of color image smoothing.

ure 4, smoothing of a color image3 is also considered. We

note that, when performing color image filtering, the filter

weights are calculated in the CIELAB space. The values of

intensity and color channels in this space are in the ranges

of [0, 100] and [-128,127], respectively.

Figures 5 and 6 show the smoothing results of different

images. As noted earlier, we chose the same σr (or
√
ǫ) for

all filters for fair comparisons. Compared with our propa-

gation filters, we see that all other filters were not able to

properly preserve image edges. As depicted in Figure 6,

while larger σs obviously resulted in eroded building spires

for bilateral and geodesic filters due to cross-region mixing

(see image regions in blue and magenta boxes in Figure 6

for examples), the use of smaller σs was still not able to

preserve edges in such highly textural regions. Examples in

supplemental materials show that guided and recursive bi-

lateral filters have similar problems. It is worth repeating

that since our propagation filter utilizes both intermediate

adjacent pixel information and direct photometric relation-

ships with the center pixel, it adapts well to image context.

This explains why better image smoothing outputs can be

expected even the image contains both smooth and highly

textural regions.

3By courtesy of http://www.flickr.com/photos/hhoyer/7105107291

Figure 7: Flash/no-flash denoising. Input images are from [20].

Parameter choices for the bilateral filter: σs = 3 and σr = 10−3

(as [20]), the guided filter: w = 3 and ǫ = (10−5)2, and our

propagation filter: w = 12 and σr = 0.01.

Flash/No­Flash Denoising

Generally, flash images contain more image details, but

their colors are less vivid due to extreme illumination con-

ditions. Petschnigg et al. [20] proposed the technique of

joint bilateral filtering, which denoises a no-flash image un-

der the guidance of its flash version. In other words, with

the goal of preserving image characteristics, it calculates fil-

ter weights from the flash image, and filtering is performed

over the no-flash version.

The same operation can be applied to propagation filter-

ing. Figure 7 presents and compares the results produced by

bilateral, guided, and propagation filters. It can be seen that,

although bilateral and guided filters were able to disregard

image noise in dark regions, they failed to preserve image

details as our propagation filters did. More example results

can be found in our supplementary materials.

From the above examples, we note that our filtering algo-

rithm can be applied and integrated into other filters, which

utilize additional reference images for solving particular

tasks. For example, the bilateral filtering process in [4] can

be replaced by our propagation filtering algorithm. Since

ours better alleviates cross-region mixing problems than the

standard bilateral filter does, improved results can be ex-

pected if such replacement is deployed.

Image Fusion

Image fusion aims at integrating multiple images to one

single output, so that the resulting image would contain

more comprehensive information than each of the inputs

does. A popular example of image fusion is the combination

of multi-focus images. Li et al. [15] proposed an algorithm

which is able to fuse images, with the weights determined

by the corresponding saliency or detailed image informa-

tion. Based on the algorithm of [15], we consider two im-

ages with different focuses 4 and compare the fused outputs

produced by bilateral, guided, and our propagation filters.

Figure 8 shows the input images and the filtered outputs.

4By courtesy of http://www.imgfsr.com/ifsr˙ifs1.html
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Figure 8: Input images and saliency weights recovered by the

corresponding images. Parameter selection for the guided filter:

w = 45 and ǫ = 0.3, the bilateral filter: σs = 45 and σr =
√
0.3,

and our propagation filter: w = 45 and σr =
√
0.3.

We note that, the experiment settings, including parameter

selection for the filters considered, were the same as those

in [15]. From this figure, we can see that the weights re-

covered by our propagation filter were more consistent with

image context (e.g., salient object regions and boundaries)

without smoothing such regions. Therefore, we verify that

our propagation filter can be applied to solving the task of

image fusion.

High Dynamic Range Compression

Finally, we apply our propagation filter for high-

dynamic-range (HDR) compression. Using the algorithm

of Durand and Dorsey [7], an input image can be divided

into base and detail layers. The former is acquired by per-

forming the bilateral filtering on the input image, while the

latter is produced by subtracting the base layer from the in-

put image. By compressing only the base output and adding

the pixel information from the detail layer, one can reduce

the dynamic range of pixel values, and the image details can

be better preserved.

We now replace the bilateral filter by our propagation fil-

ter in the algorithm of [7], and we compare the HDR com-

pression results in Figure 9. Comparing Figures 9a and 9b,

the compressed output using bilateral filtering contained

over-bright and dark regions (e.g., the logo (in yellow box),

face (in blue box) and poster (in red box) in Figure 9a). This

is because that bilateral filters are more likely to encounter

cross-region mixing and produce over-smooth base images.

As a result, information extracted in the detail layer will be

over-emphasized and thus result in saturated image outputs.

As shown in Figure 9b, our propagation filter produced

satisfactory compression performance while preserving im-

age details. It is worth noting that, instead of using a

fixed σr (e.g., Figure 9b), we can determine σr(s) for fil-

tering each pixel s. This allows us to exploit image context

information during the filtering process. An example out-

put is shown in Figure 9c, in which we calculated σr(s)

based on the standard deviation of neighboring pixel values

of each pixel s to be filtered, and improved filtering results

can be observed.

Figure 9: Examples of HDR compression. (a) Result of [7] (via

bilateral filtering), (b) output using our propagation filter with w =
16 and σr = 2.5, and (c) output with propagation filtering with

w = 16 and varying σr (i.e., σr(s) = 2.5 std(N (s))).

5. Conclusion

In this paper, we presented the propagation filter as

a local filtering operator, which aims at smoothing over

images while preserving image context information. While

sharing the same goal of preserving image details as those

of bilateral and guided filters, our propagation filter is based

on the photometric relationship observed between image

pixels. Without using explicit spatial filtering functions, we

are able to alleviate cross-region mixing problems during

filtering, and thus image characteristics can be better pre-

served. In addition to comparable computation complexity

as the standard bilateral filter, we showed that the process

of propagation filtering is equivalent to robust estimation

and belief propagation, which provide theoretical supports

to our proposed filter. Finally, a variety of applications

computer vision and graphics verified the effectiveness

of our propagation filter, which was shown to outperform

existing image filters in terms of both quantitative and

qualitative evaluations.
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