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Abstract

Even the best artificial intelligence technology can not compare with humans on the induc-
tive ability. Humans can learn general rules from observed instances based only on bare-bone
prior knowledge. Lots of research on the human mind tries to explain the learning ability of
humans. Of all these hypotheses about the human mind, this thesis designs a learning model
based on the ideas of representationalism, functionalism, and neural Darwinism. This thesis
researches on the learning ability of the proposed model when the model is given only bare-
bone prior knowledge. The proposed model is composed of three parts, which are respectively
founded on representationalism, functionalism, and neural Darwinism. The knowledge repre-
sentation of the proposed model is designed based on representationalism: symbols are the
basic components of the knowledge representation of the model. The combination of knowl-
edge of the proposed model is designed based on functionalism: the knowledge in the model
can be combined in the form of functions. The inductive ability of the proposed model is de-
signed based on neural Darwinism: the model exploits evolutionary processes to learn general
rules. This thesis analyzes the proposed learning model. The expressive power of the model
is the same as the universal Turing machine. The inductive process of the model is sound but
incomplete. Three experiments are used to test the learning ability of the proposed model.
Results shows that the learning model is able to learn general rules in these experiments. The
results shows that the learning model is able to induct general rules from input instances of
these experiments. This thesis proves that a learning model presuming representationalism,
functionalism, and neural Darwinism is able to do inductive learning. Even based on bare-
bone prior knowledge, the learning model still can learn general rules from instances. The
learning model can exploit additional analogical knowledge to increase its inductive learning
ability.

Introduction

Of all the abilities of the human mind, learning ability is one of the most influential abilities in
humans’ life. Humans have the ability to conclude inductive rules from instances even based on
little prior knowledge. The learning ability of the human mind has been researched for years but
is still not fully explained. One of the research fields about the human mind is cognitive science.

Cognitive science can be roughly summed up as a scientific interdisciplinary study of the mind,
including philosophy, psychology, linguistics, artificial intelligence, robotics, and neuroscience. Its
theoretical perspective on the mind is information processing. According to Ulric Neisser (20),
information processing refers to all processes whereby the sensory input is transformed, reduced,
elaborated, stored, recovered, and used. In other words, as an information processor, the mind
represents and manipulates information. Computer science thus finds its ways into cognitive sci-
ence. A specific information-processing model of a mental ability can be simulated on a computer.
Aspects of the simulation can also yield insights which cause researches to develop new models.
Computer science thus accelerates the development of cognitive science. This thesis proposes a
model of the learning process of the human mind and simulates it on the computer.

Based on three hypotheses the thesis proposes a learning model to simulate the learning process
of human. The three hypotheses are representationalism, functionalism and neural Darwinism (9).
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Figure 1: Mental or artificial information-processing events can be evaluated on three different
levels.

Representationalism, also known as indirect realism, states that the mind uses symbols to refer the
external world. These symbols are called representations. Functionalism states that mental states
are functions of sensory inputs, other mental states, and behavioral outputs. Neural Darwinism
applies the idea of evolutionary processes to neural learning. In short, neural Darwinism asserts
that many cognitive processes are not hardwired or pre-specified at birth. Instead, a variety of
webs of neural circuits are pruned and selected by experience. Moreover, it states that all higher
level activities in brains are the results of evolutionary processes. The learning model presumes
only these three hypotheses of cognitive science and can be used to investigate these hypotheses.

According to Marr (18), mental or artificial information-processing events can be evaluated
on at least three different levels, as shown in Figure 1. The highest level is the computational
level. The computational level defines what the information problem is and why does the problem
arise. Stepping down one level is the algorithmic level, which is a description of steps to carry out
when solving the problem. At the bottom is the implementation level. The implementation level
describes the actual physical characteristics of the information processing system. There is only
one computational description of one particular problem. There can be multiple algorithms which
solve the problem and different ways in which an algorithm can be physically implemented. This
thesis focuses on the algorithmic level of the learning process of human. Particularly, this thesis
focuses on a model of the learning process of human. Why does human learns and how is the
learning process physically implemented are not covered in the thesis.

For decades, evolutionary computation (8; ?) has been used to solve various problems such
as search and optimization. Evolutionary computation implements the idea of evolution. First,
it encodes candidate solutions into chromosomes, which are strings of variables. Then, under
a predefined measurement of qualities of candidate solutions, the betters from a collection of
candidate solutions are selected to recombine. Resulted candidate solutions after the recombination
process are expected to have higher qualities. The selection-recombination process can be repeated
until an acceptable solution is created. In the thesis, the idea of neural Darwinism is practiced by
applying evolutionary computation techniques. The processes of creating and selecting functions
of representations are implemented with evolutionary computation algorithms.

This thesis utilizes representations to express knowledge. The proposed model manipulates
information by recombining knowledge as functions. In order to reflect how the learning model
performs, the model learns with bare-bone prior knowledge. By conducting experiments on this
model, insights into these hypotheses can be gained. Because representations are composed of
symbols in the model, both intermediate processes and results are more understandable compared
to models utilizing methods like Bayesian networks (14; 15) or neural networks (4; 1). In particular,
this thesis is dedicated to exploring the learning ability of the proposed model.
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Thesis Objectives

The objectives of this thesis are

1. Based on representationalism, functionalism, and neural Darwinism, design a learning model
at the algorithmic level.

2. Analyze the learning ability of the proposed model.

Particularly, this proposed learning model uses representations to express knowledge. Knowledge
is treated like functions and can combine with each other. Evolutionary computation algorithms
are implemented to simulate the process described in neural Darwinism. The learning model is
developed based on only hypotheses about the human mind. It therefore could be used as a tool
to investigate these hypotheses and the human mind.

Roadmap

This thesis is composed of four chapters.

Chapter 1 presents the background knowledge for this thesis. First, Representationalism, func-
tionalism, and neural Darwinism are elaborated. Then, evolutionary computation is de-
scribed along with an example to show how evolutionary computation is adopted when
solving optimization problems. At the end of this chapter, inductive theorem proving is
introduced. The concepts presented in the chapter should provide enough background for
readers to follow this thesis.

Chapter 2 proposes the learning model, which is designed based on representationalism, func-
tionalism, and nerual Darwinism. The connections between these hypotheses and the design
of the model are first described. An overview of the model is then illustrated. The implemen-
tation of the model is described in detail, including knowledge representation, combination of
knowledge, and the inductive process. It explains how evolutionary computations cooperate
with these hypotheses to form the proposed learning model. At the end of this chapter,
the proposed model is compared with some existing cognitive models and inductive theorem
proving systems.

Chapter 3 first analyzes the expressive power, soundness, completeness, and decidability of the
proposed model. Three experiments are then conducted to test the learning ability of the
model. Each of these experiments tests different aspects of the learning model.

Chapter 4 first gives a summary of this thesis. It then concludes this thesis. At the end, several
possible directions to extend the work are presented.

1 Background

This chapter gives an introduction to representationalism, functionalism, neural Darwinism, some
background of evolutionary computation, and inductive theorem proving. These background
knowledge will be used later in the thesis.

1.1 Representationalism

Representationalism is the philosophical position that the world which humans see in conscious
experience is not the real world itself, but an internal representation of the world (9). As illustrated
in Figure 2, the human mind refers to objects in the external world as representations. Those
objects are referents of these representations. The mind explains and manipulates the external
world via these representations.

Various hypotheses about the representations are proposed, however, they all have the following
six characteristics (13).

1. A representation bearer such as a human or a computer must realize a representation.
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The Mind

Representation

Figure 2: An illustration of representationalism.

2. A representation must have content–meaning that it stands for one or more objects.

3. A representation and its referent must be related.

4. A representation must be interpretable by representation bearers.

5. A representation bearer can map different aspects of a representation onto its referent, and
vise versa. It is called isomorphism.

6. Causal relations between referents must be preserved by their representations.

Any implementation of representations should satisfy these characteristics.
Researches in cognition suggest that there are numerous forms of representation. Paul Thagard

proposes the following four forms (23).

Concept is the most basic form of representation. A concept is an idea that represents things
which have been grouped together. For example, the concept “chair” does not refer to a
specific chair but refers to all possible chairs no matter what their colors, sizes, shapes.
Concepts can also refer to abstract ideas, like “hot” or “love”. Concepts are related in a
hierarchical fashion, where a concept at one level stands for all concepts directly below it.

Proposition is a statement or assertion typically posed in the form of a simple sentence. An
essential feature of a proposition is that it can be proved true or false. Proposition can be
expressed by:

[Relationship between elements] ([Subject element],[Object element])

where the relationship and elements are concepts.

Rule is a conditional statement of the form: “If x, then y,” where x and y are propositions.

Analogy represents the similarity between two situations. Thinking analogically involves applying
one’s knowledge about a situation to another situation. Suppose one had never taken an
airplane before, but has taken ships. The experiences of ship taking can be represented by
analogy and used to represent the airplane taking. Analogies provide the ability to generalize
learning and can also be classified as a form of reasoning.

This thesis utilizes all these forms of representation to express information. Section 2.1.1 will shows
how this thesis utilizes these forms of representations.
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1.2 Functionalism

Functionalism is a hypothesis about the mind in philosophy. The core idea of functionalism is
that the mind is composed of various functional kinds, which are distinguished by their function to
sensory inputs, behavioral outputs, and other functional kinds (9). In other words, functionalists
consider the mind to be a system of functions. Each kind of these functions is responsible for a
certain purpose.

One implication of functionalism is that the same functional kind can be realized in a quite
different way in two separate physical systems (10). It can be illustrated with computing devices.
The same program can be written in different programming languages and can be executed on
different computer architectures, such as reduced instruction set computing (RISC) or complex
instruction set computing (CISC). According to this implication, different physical substrates can
give rise to mind as long as they are composed of correct combinations of functional kinds. This
view provides the foundation for computer simulations of mental processes. Section 2.1.2 will shows
how this thesis utilizes the ideas from functionalism.

1.3 Neural Darwinism

Neural Darwinism was first proposed by Gerald Edelman in 1978 in order to reconcile two sets of
observations that seemed inconsistent with the then prevalent notions of brain function (6). First,
individual nervous systems show enormous structural and functional variability. Although there
is an obvious commonality of neural structure within a species, the degree of individual variation
far exceeds that which could be tolerated for reliable performance in any machine constructed
according to current engineering principles (5). Second, the world of stimuli encountered by a
newborn animal can not be described adequately as preexisting, unambiguous information ready
to be manipulated according to a set of rules similar to those followed by a computer executing a
program (5).

Gerald Edelman proposes the theory of neuronal group selection (6) to explain these two ob-
servations. It argues that the ability of organisms to categorize an unlabeled world and behave
in an adaptive fashion arises not from instruction or information transfer, but from processes of
selection upon variation. Like the theories of natural selection and of clonal selection in immunity,
the theory of neuronal group selection is a population theory.

According to the theory, three interactive processes exist for selection upon variation. The first
process occurs largely in embryonic and postnatal development, during which adjacent neurons
tend to be strongly interconnected in collectives of variable size and structure and form neuronal
groups. The second process consists of alterations in synaptic strengths during an animal’s activity,
selecting the correlated responses of these neuronal groups that yield adaptive behavior. The third
process is the correlated activities between neuronal groups. These correlated activities can resolve
conflicts arising between the synaptic activities of different neuronal groups and can enforce basic
rules such as spatiotemporal continuity on resulted neuronal groups.

Although the theory of neuronal group selection only accounts for the selection and variation of
neuronal groups, another work (7) proposes a mechanism for the multiplication of neuronal groups.
Therefore neuronal groups go through the processes of variation, selection, and multiplication.
These processes together form the foundation of neural Darwinism.

Further, Edelman states that all higher level activities in brains, including memory and learning,
are the results of evolutionary processes. In his opinions, memory is the enhanced ability to
categorize or generalize associatively, not the storage of features or attributes of objects as a list.
The minimal unit capable of carrying out the recategorizations is a global mapping buttressed by
learning, both of which are related to the satisfaction of systems linked to evolutionary survival.

1.4 Evolutionary Computation

Evolutionary computation (8; ?) adopts the principles of natural selection to solve search and
optimization problems. Evolutionary computation is good at solving problems which can be de-
composed into parts which have little dependencies between other parts. The problem therefore can
be encoded, and the result is composed of variables which represent different part of the problem.
The coding result is often called chromosome, and these variables are called genes. Chromosomes
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Figure 3: An example of using evolutionary computation to solve an optimization problem.

are candidate solutions to the problem. Evolutionary computation implements its algorithms on
chromosomes.

For a given a problem, the quality of a candidate solution, also called fitness, can be defined.
Under a definition of fitness, evolutionary computation utilizes three processes to solve a problem.
The three processes are selection, recombination, and replacement. They are shown in Figure 3.
Evolutionary computation repeatedly goes through these processes until a candidate solution is
accepted.

Suppose higher quality indicates higher fitness. As Darwin’s theory of natural selection suggests
that species which better fit the environment are more likely to reproduce, selection is the process
which replicates higher-fitness candidate solutions. The basic idea is that candidate solutions with
higher fitness have higher chances to be replicated. Two methods are commonly used as selection.
One is roulette-wheel selection, and the other is tournament selection (19). Roulette-wheel selection
replicates candidate solutions proportionally to their fitness. Tournament selection on the other
hand replicates the bests of randomly chosen groups of candidate solutions.

Recombination generates new candidate solutions based on those selected candidate solutions.
Two main methods are used to recombine candidate solutions. One is crossover, and the other
is mutation. Crossover is the process that two or more candidate solutions exchange their genes.
Mutation is the process to modify genes of one candidate solution. Because these resulted candi-
date solutions are generated from those betters in the original candidate solutions, these resulted
candidate solutions are expected by evolutionary computation to have higher fitness than origi-
nal candidate solutions. These resulted candidate solutions, or the offspring, will proceed to the
replacement process to replace original candidate solutions, the parent population.

Replacement is the procedure for replacing the parent population with the offspring. Certain
candidate solutions of the offspring are chosen and replaces certain candidate solutions in the parent
population. The simplest way to do replacement is replacing the entire parent population with the
entire offspring. This kind of replacement is called full replacement. Sometimes the diversity of
the population is taken into consideration. One way to keep the diversity of the population is that
only replacing parent candidate solutions with higher-fitness offspring candidate solutions which
are similar to these parents.

Here, a simple problem, shown in Figure 3, is used as an example to illustrate how evolutionary
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computation solves optimization problems. Suppose that the problem can be decomposed into
five independent parts, and each part has two possible values. Encoded candidate solutions are
therefore composed of an array of binary variables. The fitness is defined as the total number of one
in a candidate solution. The goal of the optimization problem is to find a candidate solution with
the highest fitness. Note that the definition of the fitness is unknown to evolutionary computation
algorithms, and so is the highest fitness value. When using evolutionary computation, selection,
recombination, and replacement need to be designed. For simplicity, roulette-wheel selection and
full replacement are chosen. When doing recombination, pairs of candidate solutions are picked and
exchange their genes preceding a random location. At first, four candidate solutions are generated
randomly. After running each process once, the average fitness of the population rises. The three
processes can be repeated until a candidate solution is accepted.

1.5 Inductive Theorem Proving

Inductive theorem proving (3) is a field in automated reasoning and theorem proving (12). Induc-
tive theorem proving (inductively) deduces more general instances from many instances of formulas.
The very general principle of well-founded induction, for proving some property P depending on a
parameter x, may be stated in the form of an inference rule as follows:

∀x [ (∀y y < x⇒ P (y) )⇒ P (x) ]

∀x P (x)

, where < is a well-founded order (on the domain of x).
An inference system based on some set G of assumptions defines the derivability of a formula

F , denoted by G ` F . If F is derivable, it is a deductive theorem. An interpretation satisfying a
set G of assumptions is called a model of G. A formula F is semantic entailed from or consistent
with a set G of assumptions, denoted by G |= F , if F holds in all models of G. Suppose F is an
inductive theorem, G is the set of assumptions, and ∀f, G ` f ⇒ G |= f . To prove that F is
consistent with G, one can use

G |= F ⇐⇒ ∀σ G ` σF

, where the substitution σ ranges over all ground substitutions over the given signature.

1.6 Summary

This chapter first introduces representationalism, functionalism, and neural Darwinism. Represen-
tationalism states that there are four types of representations in the human mind. Functionalism
states that the mind is s system of functions. Neural Darwinism states that there are evolution-
ary processes happening in the brain. The chapter then gives some introductions to evolutionary
computation algorithms and inductive theorem proving. Based on these hypotheses of cognitive
science and evolutionary algorithms, the thesis proposes an inductive theorem proving model. This
proposed model is then analyzed and tested for its learning ability.

2 Design the Learning Model

This chapter proposes the learning model which presumes representationalism, functionalism, and
neural Darwinism. The model simulates the learning process of the human mind depicted by these
three hypotheses. It tries to generalize from input instances with only bare-bone prior knowledge
about these input instances. Therefore the model can also be used to investigate these hypotheses.

The chapter is organized as follows. It first introduces how the learning model is inspired by
these three hypotheses, and how the model is designed based on these hypotheses. An overview of
the learning model is then provided along with the position and the block diagram of the proposed
model. Prior knowledge needed by the proposed model is described. Then, the chapter describes
the detail of the implementation of the model. At the end, the proposed model is compared to
existing cognitive models and inductive theorem proving systems.
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Figure 4: This figure illustrates the knowledge representation implemented in the model.

2.1 Based on Cognitive Hypotheses

A learning model is composed of three components. The first is the knowledge representation used
in the model. The second is the operations on these knowledge representations. The third is the
learning algorithm. Each of these components of the proposed model is designed based on one
cognitive hypothesis. Representationalism, functionalism, and neural Darwinism are hypotheses
about the human mind. Representationalism is the foundation of the knowledge representation.
Functionalism is the foundation of the operations on knowledge representations. Neural Darwinism
is the foundation of the learning algorithm of the model. This section will describes how these
components are designed based on these hypotheses.

2.1.1 Based on Representationalism

According to representationalism, objects in the external world are represented by representations
in the human mind. The mind manipulates and explains the external world via these representa-
tions. Therefore, representations are implemented in the proposed model to represent knowledge.
Section 1.1 introduces different forms of representations, including concept, proposition, rule, and
analogy. These forms of representations provides different ways to represent knowledge. Each of
them will be described below, and Figure 4 illustrates the summary of knowledge representation
implemented in the model.

A concept represents things which have been grouped together. Concepts are isomorphisc,
meaning that a concept can always represent the same group of things regardless of aspects to see
these things. Based on the characteristics of concepts, in practice the proposed model implements
concepts with symbols. In this model, the smallest unit to expressing the world is symbol. Each
symbol has its domain and value defined. For example, the symbol representing Tina, who is a
girl, has domain Girl and value Tina. A symbol always represents the same group of things, and
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Figure 6: An example of analogy representations.

the equality of symbols is defined. Two symbols are equal if they have the same domain and the
same value. Given an object, all symbols which can represent the object can be found. Concepts
are related in a hierarchical fashion, where a concept at one level stands for all concepts directly
below it. Therefore, some symbols can represent a group of symbols and form a unary relation of
symbols. In order to distinguish this kind of symbols from other, in the following of the thesis,
this kind of symbols will be called relation. When mentioning symbols, all symbols are referred,
including relations.

The second form of representation, the proposition representation, is composed of concepts.
Propositions can be expressed by:

[Relationship between elements] ([Subject element],[Object element])

where the relationship and elements are concepts. In the proposed model, a proposition is com-
posed of a sequence of symbols. The first symbol in the sequence is the symbol representing the
relationship among the following symbols. A proposition can be proved true or false, and so is
a sequence of symbols. Because the first symbols in a proposition representation represents the
relationship among the following symbols, the proposition representation is actually a syntacti-
cally pre-ordered sequence of symbols. This syntactic ordering forms a tree-wise structure in the
sequence, which is illustrated in Figure 5. Each parent in the tree is a symbol representing the
relationship among its children.

Rule representation is another form of representation. A rule representation is of the form: “If
x, then y,” where x is the conditional proposition and y is the consequent proposition. Causal
relations among concepts can be expressed by rules. In the proposed model, a rule representation
is composed of two sequences of symbols, in which the first sequence stands for the conditional
proposition and the other stands for the consequent proposition.

The last form of representation, the analogy, enables the mind to apply knowledge about a sit-
uation to another situation. Analogies implemented in the thesis are predefined sets of proposition
representations. Each set of propositions is considered as a type of analogy. Propositions belonging
to the same set are analogically equal. Figure 6 illustrates an example of analogy representations.
In this example, proposition1 and proposition2 belong to AnalogyA; proposition2 and proposition3

belong to AnalogyB ; proposition1 and proposition3 are not analogically equal. Note that one
proposition can belong to no analogy, and the proposed model does not know what belongs to an
analogy. The model can only test whether two propositions belong to the same analogy.

Analogy allows the model to apply knowledge about one proposition to another which is ana-
logically equal to the proposition. If two propositions are analogically equal and one of them has
known consequent proposition, the model can assume that the other proposition has the same
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consequent proposition. Analogical equality of two propositions does not guarantee that these
two propositions will have the same consequent proposition. Sometimes two analogically equal
propositions have different consequent propositions. In this situation, this analogy should not be
applied to these propositions. The model learns the type of analogy which can be applied to one
proposition by testing whether any analogically equal proposition in the knowledge base conflicts
with the tested proposition. If any conflict happens, this analogy is considered inconsistent to all
propositions analogically equal to the tested proposition.

2.1.2 Based on Functionalism

According to Functionalism, the mind is composed of various functional kinds, which are distin-
guished by their function to sensory inputs, behavioral outputs, and other functional kinds. The
mind therefore can be thought as a system of functions.

All representations implemented in the proposed model are functions. Given a symbol, whether
or not an object is represented by the symbol is either true or false. Any proposition can be proved
true or false. A rule representation expresses a causal relation of propositions, and therefore a rule
representation is itself a function. Note that different rules with the same conditional proposition
and different consequent propositions are considered as different functions. Analogy representations
also satisfies the definition of function, because the set-belonging property is a function.

Functions can be connected with each other by cascading. Outputs of a function can be
the inputs of another function. This characteristic of function is the foundation of combining
representations in the proposed model. In the proposed model, propositions can connect with each
other. Parts of a proposition can be replaced by another proposition if the resulted proposition
is syntactically correct. As a result, rule representations can combine with each other. Figure 7
shows an example of combining two rules. As shown in this figure, the combinations of rules can
also be considered as replacing subtrees.

2.1.3 Based on Neural Darwinism

Neural Darwinism states that the adaptive behaviors of the mind sources from the variation,
replication, and selection of neuronal groups. Each neuronal group is considered as a function in
the thesis. It means that the evolutionary processes upon neuronal groups are implemented with
the evolutionary processes upon functions. In particular, the evolutionary processes are operating
on proposition and rule representations.

The implementation is supported by functionalism and representationalism. As the neural
Darwinism considers neuronal groups as the unit of evolutionary processes, functionalism states
that the mind is composed of functional kinds. Neuronal groups therefore can be considered as
functional kinds. Under the scope of learning, these functional kinds represent knowledge. Repre-
sentationalism states that knowledge is expressed by representations in the mind. The proposed
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model uses symbols to express representations. Therefore the evolutionary processes are performing
on symbols.

Performing evolutionary processes on symbols has one immediate advantage. Operations on
symbols are understandable by human when comparing to operations on neurons. If on neurons,
evolutionary processes need to adjust structures and synapses of neurons, and these adjustments
can be difficult to trace and understand by human. On the other hand, this proposed learning model
involves only operations on symbols. These operations includes replacing, reordering, duplicating
symbols, and they are all understandable by human.

The evolutionary processes are implemented with evolutionary algorithms. Neural Darwinism
states that there are selection, replication, and variation of neuronal groups. In the proposed
model, each of these processes is simulated by corresponding evolutionary algorithms operating
on proposition and rule representations. In particular, selection of neuronal groups corresponds
to selection of representations; replication of neuronal groups corresponds to duplication of repre-
sentations; variation of neuronal groups corresponds to recombination of representations. Neural
Darwinism states that while forming neuronal groups some basic rules such as spatiotemporal con-
tinuity are enforced on these neuronal groups. Likewise when recombining symbols the syntactic
correctness in each propositions is enforced.

2.2 Overview of the Model

This section gives an overview of the learning model. First, this section shows the position of the
model in the architecture of learning. Then, this section describes the learning procedure. Last,
the block diagram of the learning model is described.

2.2.1 Position of the Model

The proposed learning model focuses on the knowledge-learning procedure following the symboliza-
tion of the inputs. Figure 8 illustrates the position of the learning model. Because representation-
alism suggests that in the mind there exist symbols representing the external world, symbolization
can be thought as an interface between the mind and the external world. The proposed model
learns upon symbolized input instances, and the symbols available to model are determined in the
symbolization process.

Ideally, the learning model and the symbolization process should cooperate. First, the sym-
bolization process provides symbolized instances to the learning model. Then, the learning model
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Figure 9: The learning procedure and the block diagram of the model.

learns from these instances and provides knowledge back to the symbolization process. Last, the
knowledge can guide and adjust the symbolization process. These procedures can proceed cycli-
cally. However, it complicates the learning problem. As the first attempt, this thesis focuses on
the second procedure in the cycle.

2.2.2 The Learning Procedure and Block Diagram

The purpose of the proposed learning model is to do inductive theorem proving. Particularly,
the model learns general rule representations from input instances. The model takes symbolized
instances as inputs. These instances are rule representations, which express the casual relations
between propositions. A rule representation is of the form:

[Proposition] → [Proposition]

, where propositions can simply be concepts which are symbols not representing relationships, or
propositions describing relationships between symbols. The learning model tries to learn general
rule representations which satisfy all input instances.

The learning procedure runs cyclically. In each run an input instance is given to the model.
An input instance is a rule representation which dose not contain any relation ,and its conse-
quent proposition does not contain any symbol describing relationships. In other words, an input
instances is a ground rule representation whose consequent proposition is composed of only con-
cept representations. This input instance is stored in a knowledge base, which also contains the
learned rules and candidate rules which might or might not be consistent with input instances. The
evolutionary algorithm uses the candidate rules as its population of candidate solutions. After a
generation (including selection, recombination, and replacement), the resulted candidate rules are
stored back into the knowledge base. Those candidate rules which have been satisfied by all input
instances in the knowledge base are considered consistent to the knowledge base and stored with
other learned rules. Figure 9 shows the learning procedure and the block diagram of the learning
model.

2.3 Provided Prior Knowledge

This learning model is designed to test the learning ability of a model presuming the three cognitive
hypotheses. In order to investigate the ability of the model, the prior knowledge should be carefully
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provided because prior knowledge has significant influence on the ability of a learning model. It
needs to be sure that the knowledge learned by the model is actually learned because of the learning
algorithm itself, not because of the prior knowledge. Therefore in the thesis, only bare-bone prior
knowledge is provided to the learning model.

The followings are the prior knowledge provided in the thesis:

1. The domains of symbols.

2. The equality of symbols.

3. The hierarchy of symbols.

4. The analogical information of the problem (not necessary).

5. The memory usage of each representation.

The first four listed prior knowledge are based on representationalism. The last listed prior knowl-
edge is needed in order to compute the fitness function used in the proposed model. Knowledge
other than those listed above is not provided to the thesis. Therefore, the model only has bare-bone
knowledge about the problem.

2.4 Implementation Detail

This section describes the implementation of the learning model in detail. In short, the learning
model is an inductive theorem proving system, and the input instances are the ground knowledge.
The inductive process is discussed in Section 2.4.1. Recall the procedure of the learning process
shown in Section 2.2.2. Every iteration an instance is provided. Because this instance may change
the ground knowledge, all learned rules and candidate rules need to be validated again. The
validating process is time-consuming, and the architecture of the knowledge base is designed to
speed up the process. The knowledge base architecture is discussed in Section 2.4.2. After the
re-validating process, the learning model tries to generalize knowledge from knowledge base. The
evolutionary algorithm is in charge of the inductive process. The fitness function used in the model
is discussed in Section 2.4.3. The implementations of selection, recombination, and replacement are
described in Section 2.4.4. Finally, the difficulties encountered in the implementation are discussed
in Section 2.4.5. Note that this thesis focuses on only deterministic knowledge, and all input
instances are correct.

2.4.1 Induction and Validation

The learning model generalizes rules from input instances. The induction sources from the hier-
archy of symbols. Recall that in a symbol hierarchy, a (relation) symbol represents all symbols
directly below it. Given the hierarchy and a rule representation, the rule can be generalized by
replacing symbols in the rule with higher level symbols in the hierarchy (, called upgrading the
rule). The resulted rule contains the same amount of knowledge as the conjunction of rules each
containing a symbol at the original level. Therefore, the resulted rule is more general than the
original rule. Figure 10 shows an example of the inductive process.

Some relations in a rule must represent the same ground symbol concurrently. For example,
suppose [R] is a relation representing symbol [A] and [B]. Seeing two rules, [C][A]→ [A] and [C][B]
→ [B] can result in an inductive rule [C][R] → [R] with the two [R] both representing the same
symbol concurrently. Without specifying the identicalness of these two [R]s the inductive rule will
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instead represent four ground rules, [C][A]→ [A], [C][A]→ [B], [C][B]→ [A], and [C][B]→ [B]. The
model uses additional information attached to a rule representation to specify identical relations
in the rule. Particularly, the model uses identical links to specify two identical relations. An
identical link points from relation R1 to relation R2 confines R1 representing the same symbol
as R2. In order to simplify the parse of rules, identical links point from the second relation to
the first relation. Back to the example above, the inductive rule is expressed by [C][R] → [R] (2
= 1). The number in the parentheses represents the index (starting from 0) of the symbol in the
rule.

Most of the time, replacing symbols results in rules which are inconsistent with the knowledge
base. Therefore, the resulted rules need to be validated. By using the inductive proof technique
described in Section 1.5, the entailment of the resulted rules from the knowledge base can be
proved by showing that all substitutions of the resulted rule ranging over all ground symbols of the
relation can be inferred from the knowledge base. In other words, the process to validate a rule
checks whether every rule resulting from every substitution of ground symbols for every relations

in the rule can be inferred from the knowledge base.
To validate an inductive rule the model checks whether the rule can be inferred by the knowledge

base. However, the inference itself is challenging. In particular, the inference in the proposed model
will be proved to be undecidable in Section 3.1.3. Therefore, to simplify the inductive process,
all input instances are always remembered by the model. Keeping all input instances makes each
inference process a series of table-lookups and substitutions. After constructing the syntax-trees
of condition part and consequence part of the rule, starting from leafs of each tree, each subtree,
which is a one-level proposition, is searched in the knowledge base and substituted for the searched
consequence proposition. If some proposition can not be found in the knowledge base, it means
that the proposition is unknown yet and the proposition is marked unknown and is stored with
the to-validate rule. When finished and all propositions are known, the resulted condition and
consequence propositions are compared to each other. If they are the same, the rule can be inferred
and is consistent with the knowledge base. If not the same, the rule is known to be inconsistent.
In this way, the inference process becomes decidable (, which will be proved in Section 3.1.3).

2.4.2 Knowledge Base Architecture

The knowledge base stores input instances, learned rules, and candidate rules. These instances
and rules are stored separately. The knowledge base organizes these instances and rules to avoid
duplicated storage of information. The knowledge base is designed to speed up the processes to
retrieving and storing knowledge.

The knowledge base is composed of hash-maps. Symbols, propositions, and rules are stored in
hash-maps and are identified by their own keys. It speeds up the retrieval and storage of knowledge.
Any information about a symbol, proposition, or a rule is grouped and stored in the hash-map.
This design avoids duplicated storage of information, and allows easy access and updates to all
information. For example, a symbol stores the keys of all propositions containing the symbol. A
proposition stores the keys of all rules containing the proposition. Remember that when a new
instance comes, the candidate rules need to be re-validated. Having access to the propositions and
further the rules containing a symbol narrows down the search space of the rules related to the
instance. Using hash-maps has another advantage which is that everything can be expressed by
keys. It reduces that amount of memory used by the learning model. The hash-map has amortized
O(1) time complexity to access and to insert data. Therefore, using hash-maps only has limited
additional costs.

2.4.3 Fitness Function

Fitness functions are important for evolutionary algorithms. The first step to use evolutionary
algorithms is to define the fitness function. In normal optimization problems the fitness functions
are given in advance, and evolutionary algorithms or other optimization techniques are used to
search for the optimal solution(s).

Unlike normal optimization problems, the problem focused on by the thesis is an inductive
theorem proving problem. The search space of an inductive theorem proving problem is usually
unbounded, and the goal of an inductive theorem proving problem is to find useful theorems, where
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the usefulness is defined by the fitness function. There exist no ultimate solutions to stop the
searching. Therefore, what is important for inductive theorem proving problems is the sequence of
found inducted theorems. A good inductive learner would be expected to learn useful information
as quick as possible. As a result, the fitness function of a inductive theorem proving problem can
be thought as a guide to the search for useful theorems.

This proposed model adopts the minimum description length principle (21) to design the fitness
function which guides the search for inductive theorems. The minimum description length principle
is a formalization of Occam’s Razor. Occam’s Razor is a principle urging that one to select
hypothesis which makes the fewest assumptions and thereby offers the simplest explanation. Given
that any set of data can be represented by a string of symbols from a finite alphabet, the minimum
description length principle states that the best hypothesis for a given set of data is the one that
leads to the best compression of the data, where the compressions are choosing strings of symbols
from a finite alphabet to represent the set of data. The minimum description length principle can
be used in information theory and learning theory, and it is also perfectly suited for the purpose
of the model. The instances are expressed by symbols, and the model tries to learn inductive rule
representations which explains ground instances. Using the minimum description length principle
as the fitness function provides the model the ability to learn simpler rules.

Using the minimum description length principle requires a method to describe (encode) datasets
and hypotheses, and a measure of the descriptions. In the model, the datasets are the ground
instances which are described by symbols. This model uses the following method to measure the
descriptions:

1. The description length of a symbol, s, is

MS(s) =

{
log2(TG) , s is a ground symbol
log2(TR) , s is a relation symbol

, where TG is the number of different ground symbols in the knowledge base, and TR is the
number of different relation symbols in the knowledge base.

2. The description length of an identical link, i, is

ME(e) = 2log2(`)− log2(TR)

, where ` is the length of the rule containing i.

3. The description length of a rule, r, is

MR(r) =
∑
s∈r

(MS(s)) +
∑
e∈r

(ME(e))

, where s is the symbols in the rule, e is the identical links.

The model uses binary encoding. It uses log2(T ) bits to represent each of T different symbols.
Representing an identical link in a rule with length ` takes two descriptions for the starting and
ending symbols, and the original description length of one of the two symbols can be saved. The
description length of a rule takes account of all symbols and identical links in the rule. These
calculations of description lengths actually models the memory required to remember these symbols
and rules.

The fitness function of a rule is defined as the description length of the rule and the ground
instances of the rule. Suppose that r is a rule, G is the set of ground instances of r which are
consistent with r, and C is the set of ground instances of r which are inconsistent with r. The
fitness of r, F (r), is defined as:

F (r) = MR(r)−
∑
i∈G

(MR(i)) + P
∑
i∈C

(MR(i))

, where P is a constant named punishment factor. The fitness function calculates the amount of
memory needed to remember the rule r. The evolutionary algorithms minimize the fitness function.

15



Under the definition of the fitness function, a useful rule consumes less memory, or even can save
memory (by having negative fitness value).

The definition of the fitness has some characteristics. First, when two rules with the same
description length compare to each other, the one has more consistent ground instances is preferred.
Second, when two rules have the same number of consistent and inconsistent ground instances,
the one with less description length is preferred. Last, when two rules with the same description
length have the same number of consistent ground instances, the one with less inconsistent ground
instances is preferred. There is no fitness gap between consistent and inconsistent rules. It is
important for using evolutionary algorithms to search consistent rules. During the search process,
inconsistent rules might be frequently generated. These inconsistent rules might just need a little
adjustments to become consistent. If there exist wide gaps between consistent and inconsistent
rules, these inconsistent rules are likely to be discarded, and it makes searching for consistent rules
like looking for a needle in a haystack. The fitness function therefore guides the search process.

2.4.4 Evolutionary Algorithms

The model uses evolutionary algorithms to simulate the variation-selection process described by
the neural Darwinism. Rule representations in the model are considered as neuronal groups of the
neuronal group selection theorem. Evolutionary algorithms are composed of three main processes:
selection, recombination, and replacement.

The selection process replicates the rules with lower fitness. These rules are considered more
useful and are replicated. The fitness function influences the process through the components in the
candidate population. After selection, rules with lower fitness values will share expectedly bigger
proportion of the candidate population. The selection process is implemented with tournament
selection.

The recombination process recombines the after-selection candidate population and generates
new rule representations. This process can be considered as the exploration of the space of all
possible rules. Two processes are included in the recombination. The first process is crossover.
Recall that the propositions are pre-ordered sequences of symbols and can be expressed by syntax
trees. In order to maintain the syntactic correctness of resulted rules, two rules crossovers by
exchanging subtrees. The domains of the symbols are required to be the same in order to maintain
the syntactic structures. In the current implementation of the model, one subtree of each rule
is chosen to exchange. The second process is mutation. During mutation each symbol has some
probability to be replaced with a symbol randomly chosen from the same symbol hierarchy.

The replacement process decides whether the newly generated rules are kept in the candidate
population or discarded. The size of the candidate population of the proposed model is limited. If
the population is full, to remember a new rule, one rule in the population must be discarded. In
order to learn a variety of rules the population the diversity of the population should be maintained.
Therefore, these generated rules (offspring) are compared with the most similar rule in a randomly
selected group of rules in the population (parent). If the offspring has lower fitness it will be kept
in the population and the parent is discarded.

The similarity of representations is measured by distance between representations. Because the
model does not have the prior knowledge about the distance between any two rule representations,
the distance is measured by equality of symbols and the hierarchy of symbols.

1. The distance between symbol sA and sB :

DS(sA, sB) =

 0 , sA == sB
0.5 , sA and sB are in the same hierarchy
1 , otherwise

2. The distance between proposition pA and pB :

DP (pA, pB) =
∑
n∈N

(
bmax

−d(n)DS (sAn , sBn)
)

, where N is the set of nodes in the tree, d(n) is the depth of the node, bmax is the max
branching factor of syntax tree in the knowledge base.
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3. The distance between rule rA and rB :

DR(rA, rB) = DP (c (rA) , c (rB))

, where c(r) is the conditional proposition of the rule r.

The distance is defined based on the prior knowledge mentioned in Section 2.3. Because the prior
knowledge provided to the model is limited, the ability of the distance is confined. For example, the
distances between any different symbols of two different symbol hierarchies are the same, and the
distances between any different symbols of one symbol hierarchy are the same. The definition of
DP (pA, pB) emphasizes the nodes with less depth and allows quick terminations of the calculations.
The working hypothesis is that if the symbols representing the relationship of two propositions are
different, the two representations describes different things and can be considered totally different
no matter what the rest of the symbols are. The distance is proportional to bmax

−d(`) so that
the distance caused by all child nodes does not exceed the distance caused by two different parent
nodes. Two propositions with equal parent symbols and completely different child nodes are more
similar that two propositions with different root symbols but identical child nodes. Therefore, the
calculation starts from the roots of the two syntax trees of pA and pB . If the roots of each subtree
are equal, the calculation continues. Otherwise, the calculation terminates.

2.4.5 Encountered Problems

The following problems are encountered when implementing the model. First is related to crossover.
Crossover exchanges contents of two rules. When exchanging a subtree with a symbol, crossover
increases the length of one rule and therefore usually results in complex rules. If the crossover
sites are uniformly chosen in rules, it has high probability that leaf nodes are chosen. Considering
balanced binary trees in which the difference between the number of leaves and parents is equal
to one. It means that a leaf node would be chosen with probability = 0.5. In order to exchange
higher-level subtrees with higher probabilities, in the model the probabilities for all levels to be
chosen ares the same. For example, suppose there are n levels in a proposition. The probability
for choosing a node in level i is 1

n . However, in this way the resulted propositions will have longer
length expectedly. To prevent longer rules occupying the population, the crossover probability
should not be too high.

Another problem is also related to crossover. Because there are various rules in the after-
selection population, if two rules are chosen uniformly in the after-selection population, two rules
with syntactically different structure will have the great probability to be chosen. Crossover two
syntactically different rules might end up ruining both rules. Therefore when choosing crossover
candidates the model chooses two similar rules in a randomly selected group of rules.

The next problem is related to mutation. Mutation replaces symbols with other symbols. If
the mutation is frequently preformed, the candidate rules in the population are like randomly
generated. The opportunity for replicating rules with lower fitness decreases when the mutation
probability is high. Therefore, the mutation probability should be low.

Another problem is related to maintaining the diversity of the population. The population can
lose its diversity. It happens when the population is filled up with low-fitness (useful) rules. It
might prevent newly generated rules entering the population because new generated rules usually
have higher fitness values. Therefore the population sometimes needs to be reinitialized. However,
less-fitness rules can provides expectedly low-fitness propositions to the recombination process.
Therefore, how often to reinitialize the population is a trade-off between the diversity of the
population and the supply of the useful components in the population. In the model, a threshold
is set to trigger the reinitialization process. Once the number of the consistent rules exceeds the
threshold, the population is reinitialized by input instances and learned rules.

2.5 Compared to Existing Methods

The proposed learning model is an inductive theorem proving system based on cognitive hypotheses
about the human mind. This section compares the proposed learning model to existing cognitive
models and inductive theorem proving methods.
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Soar (17) is a cognitive model focusing on simulating the architecture of memory of the mind.
The memory architecture of Soar is composed of two main parts which are the long-term memories
and the working memories. Soar’s learning methods tightly cooperates with its memory architec-
ture. It has three kinds of learning methods. The first is chunking, which is the main learning
method used by Soar. Chucking is a deductive learning method. After a goal state is reached,
Soar deduces new production rules from all the knowledge retrieved from the long term memories.
When facing the same problem, these resulted rules help Soar skipping some deductive processes
and increase its performance. The second method is reinforcement learning (22). Reinforcement
learning uses feedback from the environment, or what is often called a reward, to adjust the mem-
ory content of Soar. The reward can come from the “body” in which Soar is embedded, or it can
be generated when a goal is achieved. Soar use reinforcement learning to learn rules that test the
appropriate features of the states and operators and to learn the appropriate expected rewards for
each rule. The third method is semantic learning. Semantic learning learns from the co-occurrence
of structures in working memory. The resulted knowledge, or a semantic memory, represents the
relationships between a few elements in the working memory. There are three differences between
the proposed learning model and Soar. First, the proposed learning model focuses on the learning
procedure of the mind, and Soar focuses on the memory architecture of the mind. Second, the
proposed model uses inductive learning methods, and Soar uses mostly deductive learning meth-
ods. Third, the proposed model does generalization by upgrading a symbols and giving analogical
information, and Soar uses features characterizing states and operations.

ACT-R (2) is a cognitive framework which allows researchers to create models (or programs)
that incorporating the ACT-R’s view of cognition or to add their own assumptions about the
particular task. Researches on ACT-R mainly focuses on the implementation level; they research
on how a particular portion of the mind is physically implemented. Comparing with ACT-R, the
proposed model focuses on the algorithmic level. The model focuses on the learning algorithm
based on representations, functions, and evolutionary processes and does not simulate the physical
implementations of them in the mind.

The proposed model is different from most of the existing inductive theorem proving sys-
tems (16; ?; ?; ?) on two aspects. First, these existing systems are based on logical framework
(first-order or higher-order logic). By using logical expressions of knowledge, these systems are em-
bedded with the prior knowledge about logics and the dependencies between different knowledge.
The proposed model uses symbols to represent knowledge, by which the prior knowledge about
logics is not needed by the model and all knowledge are considered independent if not provided
with the analogical information. Second, the goal of the proposed model is different from the
goal of these existing systems. The proposed model wants to see whether only based on the three
cognitive hypotheses can still learn inductive theorems, and the goal of these existing models is
to create a practical inductive theorem proving system. Therefore, instead of using mathematical
proving methods like the existing systems, the proposed model uses evolutionary algorithms which
is founded on neural Darwinism as its inductive algorithm.

2.6 Summary

This chapter describes the proposed learning model. It first describes how the three hypotheses
about the human mind form a system. Representationalism forms the knowledge representation;
functionalism forms the combination of knowledge; neural Darwinism forms the inductive process.
Knowledge in the model is expressed by symbols. These symbols are syntactically structured
and form syntax trees. Cascading syntax trees combines knowledge. Inductive process in the
model is modeled by evolutionary algorithms. This chapter then describes the model in detail.
Knowledge base is hashed to increase the performance. The fitness function utilizes the idea of
minimum description length and measures the amount of memory used when remembering a rule
representation. The implementation of each stage of evolutionary processes is then described,
including the inductive process, the validation process, the design of the knowledge base, the
fitness function, the implementation of evolutionary algorithms, and some encountered problems.
At the end of this chapter, the proposed learning model is compared to two existing cognitive
models and existing inductive theorem proving systems. The proposed model differs from Soar on
its learning algorithm. The proposed model differs from ACT-R on its implementation level. The
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proposed model differs from most existing inductive theorem proving systems on its knowledge
representation and its goal. The description of the proposed model is now finished. The next
chapter will analyze and perform experiments on the proposed model to test the learning ability
of the model.

3 Analyses and Experiments

This chapter analyzes the proposed learning model, and performs three experiments to test its
learning ability. The expressive ability, soundness, completeness, and decidability of the model are
analyzed. In these experiments, the problem definition and the encoding will first be described.
Results and some observations will then be provided.

Section 3.1 analyzes the model. Section 3.2 uses the proposed model to learn general rules
from a one-dimensional minesweeper game. Section 3.3 provides the analogical information about
the one-dimensional minesweeper game and shows how analogy affects the ability of the model.
Section 3.4 applies the proposed model on the mathematical ring problem which allows rules with
unseen syntactic structure to be generated.

3.1 Analyses

As described in Section 2, the proposed model is an inductive theorem proving system. This
section analyzes the expressive ability, soundness, completeness, and decidability of the model.
The expressive ability confines the kinds of problems the model can be adopted. Soundness tells
whether those learned theorems are consistent in the knowledge base. Completeness tells whether
all theorems which can be expressed by the model can be learned. Decidability tells whether some
properties of the model can be decided by any algorithms. This section will analyze the above
properties in order.

3.1.1 Expressive Ability

The proposed model can be formally defined as M = (S, I,R), where S is the set of concept rep-
resentations or the symbols, I is the set of proposition representations of input ground instances,
and R is the set of rule representations of the form α→ β where α and β are proposition represen-
tations or strings of symbols in S and α is not the empty string. Given a model M , the one step
derivation relation⇒ is defined by xαy ⇒ xβy for all strings x, y ∈ S∗ if and only if there is a rule
representation α → β ∈ M . The language of the model is the set of proposition representations
or strings which can be derived from ground propositions I with a sequence of one step derivation
relations ⇒.

The language of the proposed model characterizes the recursively enumerable languages. It
means that for every model there exists a Turing machine which can simulate the model and vice-
versa. Because unrestricted grammars characterizes the recursively enumerable languages, this can
be proved by showing that the model can be simulated by unrestricted grammars and vise-versa.
An unrestricted grammar is a formal grammar G = (σ, P, S′), where σ is a set of symbols, P is a
set of production rules of the form α→ β where α and β are strings of symbols in σ and α is not
the empty string, and S′ ∈ σ is a specially designated start symbol.

A proposed model M = (S, I,R) can be simulated by an unrestricted grammar G = (σ, P, S′)
if S = σ, and for every ground proposition i ∈ I there is a corresponding production rule p =
S′ → i ∈ P , and for every rule representation r = α→ β ∈ R there is a corresponding production
rule p = α → β ∈ P , and P contains nothing else. The one step derivation from a ground
proposition i can be simulated by first replacing S′ with the production rule S′ → i and then
applying the corresponding production rule in P . Every derivation after then can be simulated
by applying corresponding production rule in P . Therefore for any proposed model there exists
an unrestricted grammar simulating it. The reverse construction is the same. Any unrestricted
grammar G = (σ, P, S′) can be simulated by a proposed model M = (S, I,R) by setting S = σ∪S′,
I = {S′}, and R = P . Every derivation after then can be simulated by applying corresponding
rule representation in R. Therefore for any unrestricted grammar there exists a proposed model
which can simulate it.
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3.1.2 Soundness and Completeness

The definition of soundness is that every learned theorem is consistent with the knowledge base.
The definition of completeness is that every consistent theorem which can be expressed by the
model can be learned by the model. Most inductive theorem proving models are sound but not
complete (11).

The proposed model is sound, because every learned theorem is validated and checked whether
it is consistent with every input instances in the knowledge base. The proposed model is not
complete. The incompleteness is caused by the characteristics of evolutionary algorithms. The
evolutionary algorithms are guided by the fitness function. Every generation the fitness function
determines which rules to replicate and as a consequence decides the direction to explore the search
space. During the selection-replacement processes, some symbols or propositions might always be
considered worse by the fitness function and never appear in the population. As a result, rules
composed of these extincted symbols or propositions might never be learned.

3.1.3 Decidability

Two questions are usually asked about an inductive theorem proving problem. The first is that
given a knowledge base and a ground theorem whether or not the theorem is consistent with the
knowledge base. The second is that given a knowledge base and an inductive theorem whether or
not the theorem is inductively consistent with the knowledge base. For most inductive theorem
proving systems, the first question is undecidable but semi-decidable, and the second question is
neither decidable nor semi-decidable (11). Under the assumptions used in the thesis–the consequent
propositions of input instances are concepts–both of the questions are decidable.

For the proposed model, determining whether a rule is consistent with the knowledge base
is decidable. Because the proposed model remembers all ground knowledge, and the syntactic
information is available to the model, any syntactically correct ground proposition representations
can be simplified from leaves in the syntax trees and finally result in one proposition without any
relationship symbols. The two simplified propositions of a ground rule can be compared. If they
are the same the rule is considered consistent with the knowledge base. There are finite symbols in
a rule representation, and every simplification decreases the number of symbols. Therefore, finite
number of simplifications are needed, so the process is decidable. Particularly, if not every ground
input instances are not remembered by the model, the problem becomes undecidable. It loses the
properties that for every proposition with more than one symbols there must be a simplification
which can decrease the number of the proposition. Because the model is actually an universal
Turing machine, determining a rule is consistent is the same as determining whether the Turing
machine accepts the rule, which is undecidable.

The second question is also decidable for the proposed model. Because any inductive theorem
in the model can be downgrade to finite number of ground rule representations and validating a
ground rule is decidable (shown by the first question), checking whether an inductive theorem is
consistent is therefore decidable.

3.2 Experiment 1: Minesweeper

In this experiment, the proposed model is applied to a one-dimensional minesweeper game. The
proposed model is expected to learn general rules about how the bombs are deployed. In the
following subsections, the game will first be described, and then the encoding of the game used in
the experiment is shown. The learning results will be illustrated at the end of the section.

3.2.1 Problem Description

The game, one-dimensional minesweeper, is simplified from the original two-dimensional minesweeper
game. There are a one-dimensional N -cell array, c0, c1, ..., cN−1. At each cell, a bomb is deployed
by random. Bi shows the number of bombs at the cell ci, where i = 0, ..., N −1, and Bi = 0, 1. All
Bi, i = 0, ..., N − 1 are hidden from the player, in this case, the learning model. Each cell, ci has
an indicator, Ii, which is revealed to the player. An indicator shows the total number of bombs
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Figure 11: An example of the one-dimensional minesweeper game.
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Figure 12: An example of the encoding of the one-dimensional minesweeper game.

around the cell.

Ii =

 B0 +B1 , i = 0
Bi−1 +Bi +Bi+1 , i = 1, ..., N − 2
BN−2 +BN−1 , i = N − 1

(1)

Given indicators of all cells, the player is asked to guess whether or not a bomb is deployed at
each cell. Note that the game can have deterministic answer if N mod 3 6= 2. Figure 11 shows an
example of the game with N = 7.

3.2.2 Problem Encoding

The proposed model takes strings of symbols as inputs. Therefore the problem should be encoded
by symbols before provided to the model. In the experiment, a straight-forward encoding is
adopted.

Given the indicators of all cells, in order to represent whether or not a bomb is deployed at
cell i, the instance is encoded in the form shown in Figure 12. Remind that an input instance is a
rule representation, and the first symbol in a proposition representation indicates the relationship
among the following symbols. In the conditional proposition of the instance, the first symbol,
Check, represents that the proposition checks the following symbols. The second symbol in the
proposition indicates the position to check the bomb. This symbol has the domain Position, and
its value starts from 0 and ends at N −1. All of the following symbols in the proposition represent
the indicators. For convenience, these symbols are arranged in ascending order of the positions of
the cells. Each of them has the domain Indicator, and its value can be one in zero to three. In
the consequent proposition of the instance, only one symbol represents whether there is a bomb
at the position. This symbol has domain Boolean, and its value can be True or False. Note that
this encoding does not attach any information other than the position to check, the indicators, and
whether there is a bomb at the position. All symbols in the instances are considered independent
by the model.

Two hierarchies of symbols are provided to the learning model. One has the domain Position,
and the other has domain Indicator. Both of the hierarchies are shown in Figure 13. Only one
relation exists in each hierarchy. The symbol, AllPosition, represents all possible positions,
and the symbol, AllIndicator, represents all possible indicators.
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(b) The hierarchy of symbols representing indi-
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Figure 13: The hierarchy of symbols provided in the experiment.

3.2.3 Experiment Results

In the following experiments, the population size is fixed, the crossover probability = 0.25, the
mutation probability = 0.5, no reinitialization is performed, and the group size used in the re-
placement is one tenth of the population size. In each round an instance is randomly generated
and provided to the model, and the evolutionary algorithms runs one generation. The results are
averages of ten different runs.

The first experiment focuses on the punishment factor in the fitness function. In this experi-
ment, N = 7, population size = 25, and the punishment factor = 0, 0.5, 1, 2, 4, 100. The results are
shown in Figure 14. Figure 14a shows the number of learned consistent rules. Figure 14b shows
the number of consistent rules in current population.

The results shows that when the punishment factor is less than or equal to one, the number
of consistent rules in the population decreases as the generation increases. As a result, no new
rules are learned after 200th generation. The reason of the phenomenon is that when no or little
punishment is practiced, conflicted rules usually have the lower(better) fitness values. Upgrading
a rule does not decrease the number of consistent ground instances and usually will increase the
number. However, most of the time upgrading a rule increases a lot of conflicted ground instances
and makes the rule inconsistent. If the number of conflicted ground instances does not been
considered in the fitness function, the population will prefer highly upgraded rules which usually
are inconsistent.

Also shown in Figure 14 is that when the punishment factor is too large, the number of learned
rules will at last less than that of a moderate punishment factor. High punishment makes the
population prefer the consistent rules. Therefore at first the number of learned rules will be
higher. However as the times goes higher punishment will prevent the inconsistent rules appearing
in population and further prevent new rules being learned. As a consequence, without loss of
generality, in the following experiments the punishment factor is set to four.

The next experiment shows the effect of the fitness function. Figure 15 shows the number
of rules seen by the model (Total Seen), rules seen by population (Population Seen), learned
consistent rules, and consistent rules in current population with population size = 25, 100. Note
that the vertical axis is in log scale. This figure shows that a lot of rules in the offspring are filtered
out by the fitness function and do not enter the population. This filtering effect makes the learning
model can learn with a relatively small amount of population size. Rules which save more memory
have lower fitness values and are kept in the population with higher probability. Rules which save
less memory therefore are considered unimportant and are forgotten. This figure also shows that
when the population size increases, the filtering effect does not prevent the learning model utilizing
additional population size.

The next experiment shows the generalization ability of the model. Figure 16 shows the coverage
of ground instances during the learning. An instance is covered if it belongs to at least one set of
ground instances of a consistent rule in the population. The figure shows: the number of all covered
ground instances (All Covered Instance) which might contain instances with input propositions
which will never appear in the input ground instances, the number of input ground instances (Input
Instance), the number of covered consistent ground instances (Covered Consistent Instance), and
the number of covered input ground instances existing in the knowledge base (Covered Input
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(b) The number of consistent rules in current population.

Figure 14: This experiment focuses on the punishment factor in the fitness function.

Instance). These results show that on average each consistent rule covers more than one ground
instances. The result also show that these consistent rules can cover input instances which have
not yet been seen by the model. This figure also shows that the increase of the population size will
raise the generalization ability of the model. The above results shows that the proposed learning
model has the ability to generalize from input instances in this problem.

Figure 17 shows the proportion of consistent rules in the all seen rules (, which are rules seen
by both population and offspring) and all rules seen by the population with population size = 25
when all input instances are given at once at the beginning of the experiment. The dashed line
shows the probability that consistent rules are found when randomly guessing. This figure shows
that the probability for a consistent rule to be found in the offspring is gradually increasing. It
means that the search direction of the model becomes more efficient as the generation goes.

Figure 18 shows some rules learned by the proposed model with population size = 25. Because
there are about 150 rules learned, only some of them can be shown here. Because the ground
instances are provided one at a time, some of the rules might be considered consistent at one
generation and become inconsistent later.

3.3 Experiment 2: Minesweeper plus Analogy

In Section 3.2, each of the instances and each of the symbols are considered independent. One
rule can only be applied to ground propositions which are the same as the conditional proposition
of the rule. This requirement makes the learning process inefficient when there might be some
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(b) Population size = 100.

Figure 15: This figure shows the number of rules seen by the model (Total Seen), the number of
rules seen by the population (Population Seen), the number of learned consistent rules (Learned
Consistent), and the number of consistent rules in current population (Consistent in Current
Population) of each generation in the minesweeper problem.

dependencies and similarities in the instances. Providing analogy representations gives the model
the ability to connect seemed-independent instances. In this section, the experiment is still per-
formed on the minesweeper game used in Section 3.2. The problem and the instance encoding are
the same. Additionally, the analogical information is provided to the learning model.

3.3.1 The Analogy Information

In the section, twenty types of analogies are defined based on the symbol Check. It means that
when learning propositions leading by Check, there are total twenty one options (twenty analogies
and no analogy) for the model to link instances. The model does not know how these analogies
works and what these analogies are composed of. It can only test whether two instances satisfy a
type of analogy.

Suppose a and b are propositions. Let x(a) be the position of the cell to check in proposition
a, I(x) be the indicator of the cell at position x, and a ≈ b means that a and b are analogically
equal. Ten types of the analogies are defined as follows:

1. Current Cell:
a ≈ b⇔ I(xa) = I(xb), xa = x(a), xb = x(b)

2. Left 1:
a ≈ b⇔ I(xai

) = I(xbi), xai
= x(a) + i, xbi = x(b) + i, i = −1, 0
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(c) Population size = 200.

Figure 16: The figure shows the coverage of ground instances in the minesweeper problem. The
number of all covered ground instances (All Covered Instance) which might contain instances with
input propositions which will never appear in the ground instances, the number of input ground
instances (Input Instance), the number of covered consistent ground instances (Covered Consistent
Instance), and the number of covered input instances existing in the knowledge base (Covered Input
Instance).
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Figure 17: The proportion of consistent rules in the minesweeper experiment.

3. Right 1:
a ≈ b⇔ I(xai

) = I(xbi), xai
= x(a) + i, xbi = x(b) + i, i = 0, 1

4. Left 2:
a ≈ b⇔ I(xai

) = I(xbi), xai
= x(a) + i, xbi = x(b) + i, i = −2,−1, 0

5. Left 1 Right 1:
a ≈ b⇔ I(xai) = I(xbi), xai = x(a) + i, xbi = x(b) + i, i = −1, 0, 1

6. Right 2:
a ≈ b⇔ I(xai

) = I(xbi), xai
= x(a) + i, xbi = x(b) + i, i = 0, 1, 2

7. Left 3:
a ≈ b⇔ I(xai

) = I(xbi), xai
= x(a) + i, xbi = x(b) + i, i = −3,−2,−1, 0

8. Left 2 Right 1 :
a ≈ b⇔ I(xai) = I(xbi), xai = x(a) + i, xbi = x(b) + i, i = −2,−1, 0, 1

9. Left 1 Right 2 :
a ≈ b⇔ I(xai

) = I(xbi), xai
= x(a) + i, xbi = x(b) + i, i = −1, 0, 1, 2

10. Right 3 :
a ≈ b⇔ I(xai

) = I(xbi), xai
= x(a) + i, xbi = x(b) + i, i = 0, 1, 2, 3

Another ten types of analogy are defined as those above but without checking whether I(x(a)) =
I(x(b)). If any index is out of bound the two propositions are considered not analogically equal.
Figure 19 shows some examples of the analogies. Note that some types of analogies can cause two
analogically equal conditional propositions conflict with each other. Figure 20 shows an example
in which the conditional propositions of the two instances are analogically equal (Left 1 Right 1)
but their consequent propositions are not the same. The model has to learn the type of analogies
to used when dealing with different conditional propositions. When two seemed analogically equal
conditional propositions have different consequent propositions, the type of analogy is considered
illegal to both of the conditional propositions.

3.3.2 Experiment Results

In the following experiments, N = 7, crossover probability = 0.25, mutation probability = 0.5, no
reinitialization is performed, and the group size of replacement is one tenth of the population size.
Each round an instance is randomly generated and provided to the model, and the evolutionary
algorithms runs one generation. Each symbol Check is labeled with one type of analogy, including
not using analogy. Two symbol Check labeled with different type of analogies are considered
different symbols.

Three experiments are preformed to test the influence of analogy. The first experiment only
uses the analogy “Current Cell”. The second one uses all ten analogies described above. The third
one uses these ten analogies without checking I(x(a)) = I(x(b)). The coverage of ground instances
of these experiments are shown in Figure 21a, Figure 21b, and Figure 21c respectively.
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? 3 ? ? 1 ? ?Generation 12

? ? 2 ? 0 0 ?Generation 24

? ? ? 3 2 2 1Generation 26

2 ? 3 3 ? 3 2Generation 124

? ? 1 ? 0 ? ?Generation 102

? 0 ? ? 0 ? 0Generation 39

0 1 ? ? ? ? ?Generation 1983

? ? ? ? ? 1 1Generation 1990

? ? ? ? ? ? ?Generation 1991

Figure 18: The learned rules of the minesweeper experiment with population size = 25. The
arrows mean the position to determine bombed. The question mark means the indicator value of
the position can be any value. The equal sign means the indicator values are the same.
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Left 2 Right 1

Not Satisfied Analogy types:
Right 2
Left 3
Left 1 Right 2 
Right 3

Figure 19: Some examples of the analogies.

Figure 21 shows that providing analogical information to the learning model increases its ability
to generalize from instances. The lines labeled “Analogically Covered Instance” shows the number
of input instances which are analogically covered only. All sub-figures in Figure 21 have positive
number of analogically covered input instances. It means that the model benefits from all these
three sets of analogies. Figure 21 also shows that the analogical information provided to the model
can affect the performance of generalization. The number of total covered input instances when
providing only the analogy “Current Cell” is much lower than that when providing ten types of
analogy. In Figure 21b and 21c, the number of total covered input instances is much higher than
the number of actually covered input instances and is close to the maximum number of input
instances. Note that the fitness function used in the proposed model is not designed to maximize
the number of input instances covered by the whole population. Some input instances might be
covered by multiple rules. Nevertheless, the results still shows that the generalization ability of
the proposed model is improved by providing analogical information.

3.4 Experiment 3: Mathematical Ring

In this section, the proposed model is applied to a mathematical ring problem. This problem is
designed to test the learning ability of the model when combinations of propositions are allowed
and rules with unseen syntactic structures can be generated. In Section 3.2 and 3.3, crossover does
not have much effect because the syntactic structure confines the number of levels in propositions
to one. The mathematical ring problem has the syntactic structure allowing combinations of
propositions and can generate more complex syntactic structures.

A ring is defined on a set Z equipped with two binary operators ‘+’: Z × Z → Z and ‘·’:
Z × Z → Z (where × denotes the Cartesian product). To be qualified as a ring, the set and two
operators, < Z,+, · >, must satisfy the following requirements known as the ring axioms:

Closure under ‘+’ ∀a, b ∈ Z, a+ b ∈ Z
Commutativity of ‘+’ ∀a, b ∈ Z, a+ b = b+ a

Associativity of ‘+’ ∀a, b, c ∈ Z, (a+ b) + c = a+ (b+ c)

Existence of Identity of ‘+’ ∀a ∈ Z, a+ 0 = 0 + a = a

Existence of Inverse Element of ‘+’ ∀a ∈ Z,∃bs.t.a+ b = b+ a = 0

Closure under ‘·’ ∀a, b ∈ Z, a · b ∈ Z
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Figure 20: An example about the conflict of two analogically equal instances.

Associativity of ‘·’ ∀a, b, c ∈ Z, (a · b) · c = a · (b · c)
Existence of Identity of ‘·’ ∀a ∈ Z, a · 1 = 1 · a = a

Distributivity over ‘+’ and ‘·’ ∀a, b, c ∈ Z, a · (b+ c) = a · b+ a · c

Given these nine axioms, any least residue system modulo N with normal definitions of addition
and multiplication is a ring. In the experiment, the model is applied to learn the general rules in
a least residue system modulo N .

3.4.1 Problem Description and Encoding

The problem is defined on a least residue system modulo N , which contains integer 0, 1, ..., N − 1.
The operator ‘+’ is defined as the integer addition operator with modulo N . The operator ‘·’ is
defined as the integer multiplication operator with modulo N . Note that although the definition
of the ring does not require the commutativity of ‘·’ the multiplication of integer does follow
commutativity.

Every instance expresses a calculation of adding or multiplying two numbers. The conditional
proposition contains the operator and the two numbers in pre-order, and the consequent proposition
contains the result. There are two types of symbol; the first is Operator, and the second is Number.
The values of Operator symbols can be Add or Multiply. The values of Number symbols can be
one in the set {0, 1, ..., N − 1}. Figure 22 shows an example of an instance expressing 3 + 4 = 7.

3.4.2 Experiment Results

In the following experiments, the population size is fixed, the crossover probability = 0.25, the mu-
tation probability = 0.5, the punishment factor = 4, no reinitialization is performed, no analogical
information is given, and the group size of replacement is the population size. In each round an
instance is randomly generated and provided to the model, and the evolutionary algorithms runs
one generation.

Crossover generates rules with syntactic structures which are not contained in the input in-
stances. After recombination, there might be redundant propositions which contains no relations

or are known to have consequent propositions which are independent to them. These redundant
propositions make the rule contain more symbols or more ground instances. When calculating the
fitness value of the rule, if directly using these ground instances as consistent ground instances or
inconsistent ground instances, the rule will have lower fitness values than a simpler rule describing
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(a) One analogy “Current Cell” is used.
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(b) All ten analogies are used.
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(c) All ten analogies are used without checking I(x(a)) = I(x(b)).

Figure 21: The coverage of input instances of experiments on minesweeper plus analogies with pop-
ulation size = 25. “Total Instance” is the maximum number of input instances. “Instance” is the
number of input instances in the knowledge base. “Total Covered Instance” is the number of input
instances covered actually and analogically by consistent rules in the population. “Analogically
Covered Instance” is the number of input instances analogically covered by consistent rules in the
population. “True Covered Instance” is the number of input instances actually (non-analogically)
covered by consistent rules in the population.
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Operator: 
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43

Number: 
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Figure 22: An example of the instance expressing 3 + 4 = 7.

Population 
Size

� ∙ � = � ∙ �
= �

Identity
of ∙

Identity
of +

� ∙ � = � ∙ �
= �+ �

Commutativity
of +

Associativity 
of +

Associativity 
of ∙

Distributivity

25 1.00 (65) 1.00 (182) 1.00 (265) 0.65 (281) 0.60 (283) 0.00 0.00 0.00

100 1.00 (10) 1.00 (52) 1.00 (83) 1.00 (75) 1.00 (155) 0.05 (1072) 0.10 (1223) 0.00

200 1.00 (4) 1.00 (14) 1.00 (34) 1.00 (33) 1.00 (88) 0.24 (1342) 0.24 (1228) 0.00

500 1.00 (0) 1.00 (6) 1.00 (4) 1.00 (22) 1.00 (28) 0.33 (700) 0.50 (921) 0.00

Table 1: The probabilities for the proposed model to learn these rules. The average generations
needed to learn these rules are in parentheses.

the same thing because rules with redundant propositions usually have more ground instances than
concise rules. This phenomenon might even cause the model prefer inconsistent rules and result
in the population filled with inconsistent and complex rules. As a result, redundant propositions
need to be removed from rules. However, sometimes multiple propositions can combine with each
other and become redundant. It makes identifying redundant propositions difficult. Therefore,
the model currently only removes one-level redundant propositions and uses an alternative way to
calculate (in)consistent ground instances of a rule. When calculating the fitness value of a rule, the
model simplifies the ground instances until they become ground input instances. These resulted
input instances are used as the (in)consistent ground instances of the rule. As a result, concise
rules will be preferred to complex rules which cover the same input instances and have redundant
propositions.

Figure 23 shows the number of rules seen by the model, the number of rules seen by the
population, the number of learned consistent rules, and the number of consistent rules in current
population of population size = 25, 100. The filtering effect of the fitness function still occurs in
the problem. It gives the proposed model the ability to use relatively small amount of rules to
learn.

Figure 24 illustrates the coverage of instances with population size = 25, 100, 200. This figure
shows that the coverage of input instances increases as the population size increases. The difference
between the “All Covered Instance” and “Covered 1-Level Instance” shows the number of covered
instances which have two-level or higher-level conditional propositions. It shows that the proposed
model can combine and generate rules with syntactic structures which do not exist in the input
instances.

Figure 25 shows the proportion of consistent rules in the all seen rules (, which are rules seen
by both population and offspring) and all rules seen by the population with population size = 25
when all input instances are given at once at the beginning of the experiment. Note that because
higher level propositions can be generated, the search space is much larger than the input instance
space. This figure shows that the probability for a consistent rule to be found in the offspring is
gradually increasing. It means that the search direction of the model becomes more efficient as the
generation goes. The result shows that even when the search space becomes larger when higher
level propositions generated, the ability of the model to find consistent rules does not decrease.

Table 1 shows the probabilities and the average numbers of generations needed for some rules
to be learned with population size = 25, 100, 200. Those rules shown in the table are arranged from
easy (left) to difficult (right) to learn by the proposed model. Associativities and distributivity
are difficult for the model to learn. The reason is that the fitness function computes the input
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(a) Population size = 25.
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(b) Population size = 100.

Figure 23: The number of rules seen by the model (Total Seen), rules seen by the population
(Population Seen), learned consistent rules (Learned Consistent), and consistent rules in current
population (Consistent in Current Population) of each generation in the mathematical ring prob-
lem.

instances covered by a rule. Associativities and distributivity do not cover more input instances
than for example commutativity of +, and they require more memories to remember. As a result,
associativities and distributivity are not preferred by the proposed model to commutativity of +.
Nevertheless, this figure still shows that the proposed model can generalize most of the ring axioms
from input instances.

3.5 Summary

This chapter first analyzes the proposed model. The model has the same expressive power as the
universal Turing machine. The inductive process of the model is sound but incomplete. Deter-
mining whether a theorem is (inductively) consistent is decidable. This chapter then describes
three experiments performed on the proposed model. In the first experiment, only one syntactic
structure is allowed. The problem, one-dimensional minesweeper, is used to test the effect of pun-
ishment factor, the fitness function, and the generalization ability of the model. The punishment
factor should be at least one but not too large, because it makes the model prefer consistent rules
but not overly prefer so that inconsistent rules can still occur in the population and keep the diver-
sity of the population. The fitness function has filtering effect which helps the model learns with
small amount of rules. The model has the ability to generalize input instances to unseen instances.
In the second experiment, the analogical information is provided to the model. This experiment
shows that the model can utilize the analogical information to enhance its generalization ability.
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(a) Population size = 25.
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(b) Population size = 100.
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(c) Population size = 200.

Figure 24: The coverage of instances by consistent rules in the population in the mathematical
ring problem. “All Covered Instance” is the number of covered instances. “Input Instance” is the
number of input instances in the knowledge base. “Covered 1-Level Instance” is the number of
covered instances whose conditional propositions are one-level. “Covered Input Instance” is the
number of covered input instances.
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Figure 25: The proportion of consistent rules in the mathematical ring experiment.

In the third experiment, multiple syntactic structures are allowed in the problem. This experiment
shows that the model has the ability to combine and generate knowledge with unseen syntactic
structures. Results of the experiment shows that the proposed model can generalize most of the
ring axioms from input instances. It also shows that when the fitness function uses the coverage
of input ground instances to determine the saved memories, some rules might not be learned by
the model.

4 Conclusion

This thesis researches on a learning model presuming representationalism, functionalism, and neu-
ral Darwinism. This learning model is designed based only on these three cognitive hypotheses
and provided with only bare-bone prior knowledge about the learning problem. This learning
model is analyzed and tested by three experiments. This learning model has the same expressive
power as an universal Turing machine. This learning model shows that it is able to generalize
from input instances in these three experiments. The second experiment shows that the model
can utilize three different sets of analogical information to enhance its generalization ability on
the minesweeper problem. The last experiment shows that the model can learn rules with unseen
syntactic structures in the mathematical ring problem.

This thesis has three conclusions. First, a learning model based only on the three cognitive
hypotheses–representationalism, functionalism, and neural Darwinism–can do inductive learning.
Second, even provided with bare-bone prior knowledge, this learning model can still learn general
rules from input instances. Third, this learning model can easily utilize analogical information to
enhance its learning ability.

Lots in the proposed learning model can be improved. First, the inference method can be
more sophisticated. Currently, the model memorizes all input instances, and when validating a
rule, the rule is simplified by replacing propositions with consequent propositions of corresponding
input instances. This method can not infer rules which require concurrently applying two or more
learned rules. Better inference methods can especially improve the calculation of fitness values in
problems which allow rules with unseen syntactic structures, like the mathematical ring problem.
With better inference methods, the part related to the consistent inconsistent instances in the
fitness function can be computed more accurately. Second, the model can learn the representation
information itself. Currently, the representation information including the hierarchies of symbols
and analogical information is provided as prior knowledge. The learning of representation can
be included into the learning process of the model. The evolutionary processes can try different
representational candidates and select those help saving the memory usage. Third, multiple levels
of the proposed model can be researched. The learning results of one model can be used as the
input instances of another model. It forms a hierarchical structure of the models. In this way,
the higher level models are expected to learn concepts which might be more abstract than those
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learned by lower level models.
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