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Abstract

In the real world, problems with overlapping sub-problems are common. In these problems,
confliction between sub-problems are common. To study confliction between sub-problems,
overlapping need to be studied first. To study overlapping, test functions with full control-
lability over overlapping are needed. With full controllability over overlapping, experiments
can be implemented on desired extent of overlaps, and effects of overlaps can be precisely
estimated and separated while confliction is being studied. However, existing test functions
does not satisfy the requirement. In this paper, a test function with full controllability over
overlapping is proposed. Four crossover methods capable of solving problems with overlaps
are used and compared to study overlapping and confliction. Results show that the problem
difficulties to these crossover methods exponentially increases with the extent of overlaps, and
the effect of confliction decades while the extent of overlaps increases.

1 Introduction

In real world applications, overlapped sub-problems are common. Sometimes, no matter how hard
we try decomposing a problem, interactions between sub-problems are unavoidable. To cope with
real world applications efficiently, overlapping needs to be handled properly. In the area of genetic
algorithm (GA), however, there are few researches related to the topic of overlapping (9; [10; (12}
6) , and even fewer test functions for overlapping(9;|12; [7)). In problems with overlaps, confliction
between sub-problems commonly happens, but there is no research on this phenomenon. This
paper tries to pave the way for future researches on overlapping and confliction. We propose a
test function with full controllability over overlapping. With full controllability, experiments on
overlapping and confliction can be easily preformed.

In problems which highly correlated variables, or genes, are not tightly encoded, there exist
several techniques to identify and to group those variables, like ecGA (2), DSMGA (1} |11), D?
(8)), etc. By using these techniques, related genes, or building blocks (BBs) can be identified. BB-
wise uniform crossover (XO) can improve efficiencies of GA on problems without overlapping BBs.
However, as shown in figure [1} on problems with overlapping building blocks, BB-wise uniform
crossover performs poorly. In order to perform well on problems with overlapping BBs, modified
crossover methods might be needed, and overlaps need to be studied further.

To study overlapping, test functions with known global optimum, controllability of overlaps and
homogeneous overlapping structures are needed. Yu et al. (12) propose a test function with cyclical
overlaps, shown in Figure a). The test function is coarse and specially designed for theoretical
development. Two-dimensional Ising spin-glass problem (7)), shown in Figure b)7 is used to test
the performance of GAs (10; 6). Nevertheless, 2D Ising spin-glass problem lacks the ability to
control the extent of overlaps, and the global optimum is hard to find. The test function proposed
by Tsuji et al. was the first practical test function for overlaps, (9). It provides controllability of
overlaps and known global optimum, but it does not provide the ability of construct homogeneous
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Figure 1: (a) is a problem with simple overlapping structure. In this problem, every BB (large
black squares) is composed of five genes (circles) and overlapping with two other BBs, except the
first and the last BB. All BBs are traps functions. (b) is the number of function evaluations
(nfe) used by : BB-wise uniform crossover, crossover method proposed by Tsuji et al. (minCut™),
and crossover method proposed by Yu et al. (SBS). The last two crossovers will be introduced in
Section [2l Among these crossovers, uniform BB-wise crossover performs especially inefficiently on
this problem.

overlapping structures. The purpose of this paper is to design a test function with full controllability
over overlapping, which satisfies all the above requirements. With full controllability of overlapping,
it is easier to study and analysis overlapping, confliction, or other phenomenons about overlaps.

)

@J (@ spinvalue +1
o (© Spinvalue 1
© coupling constant +1
© coupling constant -1

—— satisfied coupling

(a) (b)

--—--— Unsatisfied coupling

Figure 2: (a) A test function with cyclical overlaps proposed by Yu et al. (b) A 3 x 3 2D Ising
spin-glass problem.

In Section [2] four crossovers capable of solving problems with overlapping BBs are introduced.
In Section |3 they are then compared with each other on the test function proposed by Tsuji et
al. @D In Section {4} the insufficiencies of the test function are then addressed. To overcome
these insufficiencies, a test function with fully controllable overlapping structure is proposed and
employed to study the effects of overlaps on the efficiencies of crossover methods. At the end of
this paper, competitions of sub-problems, defined as conflicts, are employed to simulate real world
applications. Conclusions are in Section [f]



2 Four existing crossover methods for overlapping problems

In this section, we introduce four existing crossover methods capable of solving problems with
overlapping BBs: minCut proposed by Yu et al. (12)), minCut™ proposed by Tsuji et al. (9), SBS
proposed by Yu et al. (10) and hBOA proposed by Pelikan et al. (4). Except hBOA, we name
these methods for convenience.

2.1 minCut
— minimal cut crossover

One early attempt to cope with overlaps is performed by Yu et al. (12)). They construct the
graph with nodes representing building blocks and edges representing overlap relationships. After
two nodes are randomly selected, a minimal cut is determined to split the graph. The crossover
exchanges the BBs separated by the cut. The algorithm is shown in Figure[3] Even though the idea
of minimizing overlap disturbance is brilliant, minCut tends to cut the graph into unbalanced halves
with one side containing only few BBs. Furthermore, because the crossover cuts the population
similarly for any chosen pair of parents, randomness of crossover is reduced.

1. Constuct a graph G = (V, E'), where the nodes
are BBs and the edges are the overlapping
linkage between two nodes.

2. Randomly choose two nodes n; and ns and
partition G into two subgraphs G; = (V1, Ey)
and Go = (Va, Es) that nq € Vi, ny € Va, and
|E| — |E1| — | E2] is minimal.

3. For each random pair in offspring, cross them
on the cut in step 2.

Figure 3: The minCut algorithm

2.2 minCut™
— an improved crossover of minCut

Tsuji et al. (9) improve minCut by eliminating nodes from the graph if a BB is identical in
both parents and by eliminating edges if the site of the overlap contains identical genes in both
parents. With this graph simplification procedure that differs with each pair of parents, compared
to minCut, minCut™ has higher rate of information exchanges. Figure 4| shows the algorithm of
minCut™.

1. Constuct a graph G = (V| E), where the nodes
are BBs and the edges are the overlapping
linkage between two nodes.

2. Do the simplifications of nodes and edges on

G.

3. Randomly choose two nodes nl and n2 and
partition G into two subgraphs G; = (V1, Ey)
and Go = (Va, Es) that nq € Vi, ny € Vs, and
|E| — |E1| — |E2] is minimal.

4. For each random pair in offspring, repeat steps
1 to 3.

Figure 4: The minCut algorithm



2.3 SBS
— Strength-based Sampling

The idea of minCut is to disrupt as few BBs as possible while still achieving maximal information
exchanges between any pair of BBs. Yu et al. (10]) continue this idea and make some modifications.
If a divergent BB was crossed by other BBs, the disruption might be minor; but if a BB was close
to converge, crossing it might create a massive damage to it. They define strength of a BB as
Strength(Z) = ; Entropy(z;) — Entropy (%), which indicates how severe the disruption can be if the
BB is crossed somewhere in the middle. & is the BB, z; is the i*" gene of the BB, and Entropy(%) is
the joint entropy of the BB. The idea is: if a certain number of BBs have to be disrupted, the weaker
ones, according to strength, are preferred. Suppose there is a method deciding alleles of a BB, and
the method will do its best to prevent disruptions of BBs. Define decided BBs as BBs with at least
one decided gene. Alleles are decided with the rule: pick the strongest BB which is overlapped
with a decided BB; if there is no such case, pick the strongest one which has not yet been decided.
We show an example in Figure When deciding alleles, they choose conditional probability as

P P
Q Q
Strength P > Strength Q =» Choose P Strength P > Strength Q =» Choose Q
(@) (b)

Figure 5: Squares in the figure represent BBs. Black square means a BB is decided, and grey
square means the opposite. Edges means there are overlapping relationships between the two
connected BBs. (a) shows that if there is no undecided BB overlapped with decided BB, the
strongest undecided BB is chosen. (b) shows that if there are undecided BBs overlapped with
decided BBs, the strongest undecided BB is chosen.

the way to achieve information exchange and reduce disruptions. Suppose a gene, gene,, is to be
decided, and genes related to it are known. The allele of gene, can be decided by sampling the
conditional probability given its decided neighbours. The parameters of the conditional probability
is generated from the mating pool. If all related genes have not been decided yet, gene, can be
decided by its marginal probability in mating pool. Here is an example in Figure[6] Combine these

P P
Q Q
Q’s allele is decided by P(Q) Q’s allele is decided by P(Q|Y)
(a) (b)

Figure 6: Nodes in the figure represent genes. Black circle means the allele is decided, and
grey circle means the opposite. Edges means there are overlapping relationships between the two
connected genes. (a) shows the situation that all related genes are not decided. The allele is decided
by sampling marginal probability. (b) shows that when some related genes are decided, alleles are
decided by sampling conditional probability given alleles of those genes and their statistics in
mating pool.

two ideas, Yu et al. propose SBS, (10). Here is the algorithm of SBS in Figure



1. Calculate strength of every BB.

2. Select a BB to be decided by using rules de-
scribed in Figure |5l and randomly select an
undecided gene in it.

3. If the gene has parents, use conditional proba-
bility given informations of its parents to sam-
ple the gene. Otherwise, use marginal proba-
bility of the gene to sample itself.

Figure 7: The algorithm of SBS

2.4 hBOA
— Hierarchical BOA

Hierarchical Bayesian optimization algorithm, hBOA, was proposed by Pelikan and Goldberg. (4).
Hierarchical BOA is a modified version of Bayesian optimization algorithm, BOA (5). Unlike ordi-
nary genetic algorithms, BOA tries to learn the distribution behind the population and represent it
with a Bayesian network (3)). After the learning procedure, offspring is sampled from the Bayesian
network by forward sampling (3). Selection is preformed to shape the distribution behind the
population into the distribution of the problem. The procedure of forward sampling is shown in
Figure|8l Hierarchical BOA is a modification of BOA for solving hierarchical problems. On the 2D
Ising spin-glass problem described in Section |1, hBOA shows its powerful ability to solve problems
with complex overlaps (6)).

0| 0.6

0 0.7 ° 0 0.9

1 0.6 1 0.3

Figure 8: This figure shows the procedure of forward sampling used by BOA. Nodes in this figure
represent genes. The graph is the Bayesian network learnt. First, the root of the graph is sampled
by using its prior probability. After all parents are sampled, children, node B and node C in this
example, are sampled by using conditional probabilities given alleles of their parents.

3 Comparisons on Tsuji et al.s’ test function

In this section, we compare these four crossovers described in Section [2] with the test function
proposed by Tsuji et al., which is the first practical test function with controllable extent of
overlaps. We will first define the notations used through this paper. In the next subsection, the
test function is introduced. Results of the comparison are then presented.

A chromosome C of length [ is represented as a series of genes, C= g1¢s...g;...g;, where the
subscripts are the index of gene. The fitness of C is defined as f(C) = >_i" | fi(G;), where m is the
total number of sub-problems, or building blocks, f; is the fitness function of i*" sub-problem, and



(; is an ordered set of genes related with f;. A problem is said to be with overlaps if a gene belongs
to two or more sub-problems. For example, G1 = ¢1939599910 and G2 = ¢1949597ge overlap with
gene g1 and gs.

3.1 Test function proposed by Tsuji et al.

In the test function, fitness function of each sub-problem is a 5-bit trap function defined as:

v 4w=0,1,2,34
traps(G;) = { 8 0—5

, where u is the number of 1’s in G;.
The ordered set of genes of a sub-problem, G, is defined as follows:

G = (N(3j,0%)mod I, N(3j,0*)mod I, ..., N (34, 0%)mod 1),

where N(u,0?) is the normal distribution with mean p and variance o2. A gene cannot be in G;
more than once. Therefore, the whole fitness function of a chromosome is

f(C) = trap5(Gy) + trap5(Gs) + ... + trap5(Gp,). (2)

Besides o, i also can control the test function. Define w as the number of BBs a gene belongs to
and @ as the average of w of all genes in a chromosome. We have @ = £. The comparison between

I
w and o on the problem difficulty is studied in the next subsection.

3.2 Experiments with known BBs

To compare the effect of different crossovers separately, we provide each crossover method with
perfect information of BBs. We perform bisections on 10 different problems to find the number of
function evaluations (nfe) required to successively find the global optimum 10 times by bisection
method. The maximal number of generation is limited to 200. No mutation is applied in the
experiments. RTR is applied to all methods. Each crossover is tested with [ = 20 and £ = 5. We
set o =1, 5, 10, 100 and w = 1, 1.5, 2, 2.5 to compare their impact on the problem difficulty, or
nfe. Figure [J]shows the comparison between w and o on nfe, or problem difficulty. The left side of
Figure [0]shows the nfe of each crossover scaled with w, and the right side shows the nfe scaled with
0. As shown in the left-side figures, generally, nfe grows beyond exponentially with w when o is
large. In right-side figures, nfe does not increase with o when o is large. The result is reasonable
because when o is large enough, every gene has almost the same probability to be selected. This
phenomenon also occurs in large problems, as shown in Figure

3.3 Experiments with unknown BBs

In general, relationships between genes, or BBs, are not known and must be identified with some
methods. Inorder to compare with hBOA, we use DSMGA with these crossovers to identify BBs.
We find nfe required to successively find the global optimum 10 times on 5 different problems with
bisection. No mutation is applied. RTR is applied. The results are shown in Figure It shows
that hBOA performs best.

4 Proposed Test Function on overlapping

A good test function for overlapping researches requires not only controllability of overlaps but
also the ability to construct a homogeneous structure. Heterogeneity in structure makes a problem
harder without expectation. Figure [12] shows how heterogeneity can cause unexpected difficulties
of a problem. If those unexpected overlaps are not noticed and handled well, comparison on those
heterogeneous problems is not fair. At the beginning of this section, insufficiencies of the test
function proposed by Tsuji et al. are discussed. We then propose a test function satisfying both
requirements above. In the end, crossover methods described in Section [2] are compared by using
the proposed test function.
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Figure 9: The comparison between w and ¢ on the problem difficulty of test function proposed
by Tsuji et al. The left side is the results scale with w while the right side scales with o. The
chromosome length is 20, and the size of BBs is 5.

Although the test function proposed by Tsuji et al. provides adjust-ability of w, it lacks the
ability to construct a homogeneous overlapping structure. The standard deviation, o, indicates
the localities of the relationships among genes. Figure [I3] and Figure [14] show adjustments of o
and adjustments of w both affect the homogeneity of structures. It shows even when w is equal to
1, homogeneity is not guaranteed. The test function proposed by Tsuji et al. is good but not good
enough.

4.1 Full controllability over overlapping

A test function with fully controllable overlapping structure is proposed. Full controllability means
we can directly assign w to each gene. It provides not only intuitive control of overlaps but
also the ability to construct a homogeneous overlapping structure. To achieve full controllability,
the building block assigning problem is reduced to a bipartite matching problem. By setting
parameters, expected overlapping structures are constructed. Bipartite matching problem can be
easily solved by finding maximal flow. The procedure to create a heterogeneous structure is trivial
so is omitted. We introduce the procedure to construct a homogeneous structure. Suppose every
BB contains k € N— {0} different genes, and the chromosome length is [ € N—{0}. The desired w
of each gene is Wpesired € R, Wpesireq = 1. The size of a BB, m, is set to be floor of l“”‘“’% ‘When
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Figure 11: Results of the test function proposed by Tsuji et al. with [ = 60, u = 3, k = 5.
Information of BBs is not provided.

difference between any two flow from genes to the target is at most 1, homogeneity is achieved. To
ensure homogeneity, difference between any two capacities from genes to the target is at most 1,
and the total capacities from genes to the target should be equal to maximal flow; that is mk = lw.
The capacities of edges from mk mod [ genes to the target are set at ceiling of mTk, and others are
set at floor of mTk The capacity of minimal cut, ml, should be larger than mk to ensure every BB
is fully assigned. An example of [ = 6,k = 3, Wyesireda = 2.5 is shown in Figure When maximal
flow is achieved, w of all genes are either wpesired O Wpesireda — 1. Homogeneity is achieved.
Because of multiple solutions of maximal flow, randomness is kept. Figure [16] shows statistics of
1000 different constructions. It shows that the average w of all genes is always close to Wpesired-
The number of BBs a BB overlaps is also drawn, which shows there still exist randomness in the
structures. Therefore, the proposed test function can construct a homogeneous structure without
loss of randomness. By using this test function, experiments on overlaps are robust.

4.2 Experiments on overlapping

Without lose of generality, all BBs are trap?™® with k = 5, which is defined as

k—1—u
R <k
trap™* (G) = Rt Y
1 u==%k

, where ¢ = 0.8 is a constant, GG is the ordered set of genes related to the sub-problem, and w
is number of 1’s in G. We compare minCut, minCut™, and SBS with full information of BBs.
When information of BBs is not provided, we use DSMGA with these crossovers to compare with
hBOA. Each point is a result of 5 independent bisections with 10 successive runs to find the global
optimum. The results are shown in Figure [T7]

When the information of BBs is given, SBS outperforms minCut and minCut™. When the
information of BBs is unknown, hBOA performs best. SBS outperforms minCut and minCut™
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Figure 12: This figure shows how heterogeneity can cause unexpected difficulties of a problem.
Black square with label A,B,and C are BBs. Circles are genes. (a) and (b) are both problems
with 7 genes, and 3 BBs. Each BB contains 3 genes. In average, genes of both problems belong
to 3%3 = 1.4 BBs, but heterogeneity makes problem (b) harder. (a) is homogeneous and (b) is
heterogeneous. In (a), two genes are overlapped. In (b), because a gene is unused, three genes are
overlapped causing the overlaps more complex in effective part of chromosome.
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Figure 13: This figure shows statistics of the test function proposed by Tsuji et al. with 4 = 3 and
k =5. The w is 1.67. It shows adjustments of o affect the homogeneity of structures.

only when o gets larger. These results are consistent with results in Section |3.2 They both
show that the difficulties of problems with overlaps are highly related to w. The nfe required to
solve this problem approaches an exponential function of w for most of the existing methods, not a
beyond exponential function as in Section[3.2] It is reasonable because problems with homogeneous
overlapping structures should be easier than problems with heterogeneous overlapping structures.

5 Proposed test function on confliction

In real world problems, one particular about problems with overlaps is that overlapped sub-
problems may compete with each other. This phenomenon especially happens when local optima
conflict with each other. As a result, local optima might not compose the global optimum. We
call this phenomenon confliction. Studying confliction on heterogeneous overlapping structure is
difficult. It is hard to discriminate whether effects result from extra-overlaps or conflicts. Studying
confliction on homogeneous overlapping structure is relatively easy. Influence of overlaps can be
removed, and conflicts can be studied separately.

5.1 Study confliction

To study confliction, the global optimum should be known in advance. However, the global op-
timum of a conflictive problem is usually hard to find. As a start, we use enumeration to find
the global optimum and focus on homogeneous structure and sub-problems with same maximal
fitness. Suppose there exist two kinds of sub-problems, defenders and competitors, and their op-
tima conflict with each other. Suppose there are fewer competitors. Define the value of conflict
as the number of competitors, so conflict is at most %, where m is the number of sub-problems,
or BBs. We choose defenders as trap."™® functions. To study the effect of conflict separately, the
fitness functions of competitors should similar to those of defenders. As a consequence, the fitness
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Figure 15: The flow graph of | = 6,k = 3,Wpesirea = 2.5. Six nodes represent genes, and
floor(l‘*’m?““d) = 5 nodes represent BBs. All edges from source to BBs have capacity equal to
k = 3. Edge from all BBs to all genes have capacity = 1. Three edges from gene to the target
have capacity equal to 3. The others have capacity equal to 2.

functions of competitors are defined as

c u==%k

UfOZero(G) = {kzlzu u<k (3)

, where c¢ is a constant, G is the ordered set of genes related to the sub-problem, and u is number
of 1’s in G. Figure [18|shows an example of ufoZ°™(G). There are only slight differences between

trap™ and ufof®”, and the optimum of trap.™® conflict with the optimum of ufof*™.

5.2 Experiments on confliction

Experiments on [ = 20, kK = 5 are preformed. No information about BBs is given. RTR is adopted.
Each point is the average nfe of 5 different problems by using bisections with 10 successive runs
to find the global optimum. Figure shows the results. The slopes of the curves of SBS and
hBOA are gentler than those of minCut and minCut™. It means that SBS and hBOA handle
conflicts better than minCut and minCutt. When overlaps are moderate, or w is small, the effects
of conflicts are obvious; when overlaps are severe, or w is large, the effects of conflicts are relatively
minor. These results suggest that when dealing with conflictive problems with slight overlaps, we
might want to hBOA.

6 Conclusion
This paper tries to pave the way for future researches on overlapping, confliction, or other phe-

nomenons about overlaps. A test function with full controllability over overlapping is proposed.
By using the proposed test function, the number of BBs a gene belongs to, or w, of each gene

10
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of w between any two genes is 1.

can be directly assigned, and homogeneous structures can be easily achieved without loss of ran-
domness. With the two characteristics, experiments on any desired extent of overlapping can be
implemented, and overlapping can be focused or separated from the phenomenons to be studied.

Using this test function, four crossover methods are used and compared to study overlapping
and confliction. Results of experiments on overlapping show that the difficulties of problems with
overlapping to these crossover methods increase exponentially with the extent of overlapping.
When studying confliction, we define confliction as the competitions between sub-problems, and
the value of confliction, or conflict, as the number of competitive sub-problems, or competitors.
Results show that the effect of confliction decrease as the extent of overlapping increases. Overall,
SBS (given inflormation of BBs) and hBOA (unknown BBs) outperform minCut and minCut™ on
problems with overlaps or conflicts.

In order to efficiently handle problems with overlapping sub-problems in real world applications,
both overlapping and confliction need to be studied further. Experiments on problems with large
size need to be implemented, and an algorithm to find the global optima of a conflictive problem is
needed. Results in this paper also show that some crossover methods have greater ability against
conflicts. It might be an interesting and worthy topic to find out the source of this ability.
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